Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew N. Svalina is active.

Publication


Featured researches published by Matthew N. Svalina.


Nature Medicine | 2015

Functionally defined therapeutic targets in diffuse intrinsic pontine glioma

Catherine S. Grasso; Yujie Tang; Nathalene Truffaux; Noah Berlow; Lining Liu; Marie Anne Debily; Michael J. Quist; Lara E. Davis; Elaine C. Huang; Pamelyn Woo; Anitha Ponnuswami; Spenser Chen; Tessa Johung; Wenchao Sun; Mari Kogiso; Yuchen Du; Lin Qi; Yulun Huang; Marianne Hütt-Cabezas; Katherine E. Warren; Ludivine Le Dret; Paul S. Meltzer; Hua Mao; Martha Quezado; Dannis G. van Vuurden; Jinu Abraham; Maryam Fouladi; Matthew N. Svalina; Nicholas Wang; Cynthia Hawkins

Diffuse intrinsic pontine glioma (DIPG) is a fatal childhood cancer. We performed a chemical screen in patient-derived DIPG cultures along with RNA-seq analyses and integrated computational modeling to identify potentially effective therapeutic strategies. The multi–histone deacetylase inhibitor panobinostat demonstrated therapeutic efficacy both in vitro and in DIPG orthotopic xenograft models. Combination testing of panobinostat and the histone demethylase inhibitor GSK-J4 revealed that the two had synergistic effects. Together, these data suggest a promising therapeutic strategy for DIPG.


Nature Medicine | 2015

Erratum: Functionally defined therapeutic targets in diffuse intrinsic pontine glioma(Nature Medicine (2015) 21 (555-559) DOI: 10.1038/nm.3855)

Catherine S. Grasso; Yujie Tang; Nathalene Truffaux; Noah Berlow; Lining Liu; Marie Anne Debily; Michael J. Quist; Lara E. Davis; Elaine C. Huang; Pamelyn Woo; Anitha Ponnuswami; Spenser Chen; Tessa Johung; Wenchao Sun; Mari Kogiso; Yuchen Du; Lin Qi; Yulun Huang; Marianne Hütt-Cabezas; Katherine E. Warren; Ludivine Le Dret; Paul S. Meltzer; Hua Mao; Martha Quezado; Dannis G. van Vuurden; Jinu Abraham; Maryam Fouladi; Matthew N. Svalina; Nicholas Wang; Cynthia Hawkins

Catherine S Grasso, Yujie Tang, Nathalene Truffaux, Noah E Berlow, Lining Liu, Marie-Anne Debily, Michael J Quist, Lara E Davis, Elaine C Huang, Pamelyn J Woo, Anitha Ponnuswami, Spenser Chen, Tessa B Johung, Wenchao Sun, Mari Kogiso, Yuchen Du, Lin Qi, Yulun Huang, Marianne Hütt-Cabezas, Katherine E Warren, Ludivine Le Dret, Paul S Meltzer, Hua Mao, Martha Quezado, Dannis G van Vuurden, Jinu Abraham, Maryam Fouladi, Matthew N Svalina, Nicholas Wang, Cynthia Hawkins, Javad Nazarian, Marta M Alonso, Eric H Raabe, Esther Hulleman, Paul T Spellman, Xiao-Nan Li, Charles Keller, Ranadip Pal, Jacques Grill & Michelle Monje Nat. Med. 21, 555–559 (2015); doi:10.1038/nm.3855; published online 4 May 2015; corrected after print 15 June 2015


Cancer Cell | 2014

YAPping About Differentiation Therapy in Muscle Cancer

Matthew N. Svalina; Charles Keller

Overcoming a presumed differentiation block in the childhood muscle cancer embryonal rhabdomyosarcoma is often thought to hold promise as an approach to replace cytotoxic chemotherapy with molecularly-targeted differentiation therapies. In this issue of Cancer Cell, Tremblay and colleagues implicate YAP1 and the Hippo signaling pathway in the maintenance of differentiation-arrested and proliferative phenotypes for embryonal rhabdomyosarcoma.


Skeletal Muscle | 2013

Rb1 loss modifies but does not initiate alveolar rhabdomyosarcoma

Ken Kikuchi; Eri Taniguchi; Hung-I Harry Chen; Matthew N. Svalina; Jinu Abraham; Elaine T. Huang; Koichi Nishijo; Sean Davis; Christopher Louden; Lee Ann Zarzabal; Olivia Recht; Ayeza Bajwa; Noah Berlow; Mònica Suelves; Sherrie L. Perkins; Paul S. Meltzer; Atiya Mansoor; Joel E. Michalek; Yidong Chen; Brian P. Rubin; Charles Keller

BackgroundAlveolar rhabdomyosarcoma (aRMS) is a myogenic childhood sarcoma frequently associated with a translocation-mediated fusion gene, Pax3:Foxo1a.MethodsWe investigated the complementary role of Rb1 loss in aRMS tumor initiation and progression using conditional mouse models.ResultsRb1 loss was not a necessary and sufficient mutational event for rhabdomyosarcomagenesis, nor a strong cooperative initiating mutation. Instead, Rb1 loss was a modifier of progression and increased anaplasia and pleomorphism. Whereas Pax3:Foxo1a expression was unaltered, biomarkers of aRMS versus embryonal rhabdomyosarcoma were both increased, questioning whether these diagnostic markers are reliable in the context of Rb1 loss. Genome-wide gene expression in Pax3:Foxo1a,Rb1 tumors more closely approximated aRMS than embryonal rhabdomyosarcoma. Intrinsic loss of pRb function in aRMS was evidenced by insensitivity to a Cdk4/6 inhibitor regardless of whether Rb1 was intact or null. This loss of function could be attributed to low baseline Rb1, pRb and phospho-pRb expression in aRMS tumors for which the Rb1 locus was intact. Pax3:Foxo1a RNA interference did not increase pRb or improve Cdk inhibitor sensitivity. Human aRMS shared the feature of low and/or heterogeneous tumor cell pRb expression.ConclusionsRb1 loss from an already low pRb baseline is a significant disease modifier, raising the possibility that some cases of pleomorphic rhabdomyosarcoma may in fact be Pax3:Foxo1a-expressing aRMS with Rb1 or pRb loss of function.


Scientific Reports | 2016

IGF1R as a Key Target in High Risk, Metastatic Medulloblastoma

Matthew N. Svalina; Ken Kikuchi; Jinu Abraham; Sangeet Lal; Monika A. Davare; Teagan P. Settelmeyer; Michael C. Young; Jennifer L. Peckham; Yoon-Jae Cho; Joel E. Michalek; Brian Hernandez; Noah Berlow; Melanie A. Jackson; Daniel J. Guillaume; Nathan R. Selden; Darell D. Bigner; Kellie Nazemi; Sarah Green; Christopher L. Corless; Sakir H. Gultekin; Atiya Mansoor; Brian P. Rubin; Randall L. Woltjer; Charles Keller

Risk or presence of metastasis in medulloblastoma causes substantial treatment-related morbidity and overall mortality. Through the comparison of cytokines and growth factors in the cerebrospinal fluid (CSF) of metastatic medulloblastoma patients with factors also in conditioned media of metastatic MYC amplified medulloblastoma or leptomeningeal cells, we were led to explore the bioactivity of IGF1 in medulloblastoma by elevated CSF levels of IGF1, IGF-sequestering IGFBP3, IGFBP3-cleaving proteases (MMP and tPA), and protease modulators (TIMP1 and PAI-1). IGF1 led not only to receptor phosphorylation but also accelerated migration/adhesion in MYC amplified medulloblastoma cells in the context of appropriate matrix or meningothelial cells. Clinical correlation suggests a peri-/sub-meningothelial source of IGF-liberating proteases that could facilitate leptomeningeal metastasis. In parallel, studies of key factors responsible for cell autonomous growth in MYC amplified medulloblastoma prioritized IGF1R inhibitors. Together, our studies identify IGF1R as a high value target for clinical trials in high risk medulloblastoma.


Oncotarget | 2017

Preclinical testing of the glycogen synthase kinase-3β inhibitor tideglusib for rhabdomyosarcoma

Narendra Bharathy; Matthew N. Svalina; Teagan P. Settelmeyer; Megan M. Cleary; Noah Berlow; Susan D. Airhart; Sunny Xiang; James G. Keck; James B. Hayden; Jack F. Shern; Atiya Mansoor; Melvin Lathara; Ganapati Srinivasa; David M. Langenau; Charles Keller

Rhabdomyosarcoma (RMS) is the most common childhood soft tissue sarcoma. RMS often arise from myogenic precursors and displays a poorly differentiated skeletal muscle phenotype most closely resembling regenerating muscle. GSK3β is a ubiquitously expressed serine-threonine kinase capable of repressing the terminal myogenic differentiation program in cardiac and skeletal muscle. Recent unbiased chemical screening efforts have prioritized GSK3β inhibitors as inducers of myodifferentiation in RMS, suggesting efficacy as single agents in suppressing growth and promoting self-renewal in zebrafish transgenic embryonal RMS (eRMS) models in vivo. In this study, we tested the irreversible GSK3β-inhibitor, tideglusib for in vivo efficacy in patient-derived xenograft models of both alveolar rhabdomyosarcoma (aRMS) and eRMS. Tideglusib had effective on-target pharmacodynamic efficacy, but as a single agent had no effect on tumor progression or myodifferentiation. These results suggest that as monotherapy, GSK3β inhibitors may not be a viable treatment for aRMS or eRMS.Rhabdomyosarcoma (RMS) is the most common childhood soft tissue sarcoma. RMS often arise from myogenic precursors and displays a poorly differentiated skeletal muscle phenotype most closely resembling regenerating muscle. GSK3β is a ubiquitously expressed serine-threonine kinase capable of repressing the terminal myogenic differentiation program in cardiac and skeletal muscle. Recent unbiased chemical screening efforts have prioritized GSK3β inhibitors as inducers of myodifferentiation in RMS, suggesting efficacy as single agents in suppressing growth and promoting self-renewal in zebrafish transgenic embryonal RMS (eRMS) models in vivo. In this study, we tested the irreversible GSK3β-inhibitor, tideglusib for in vivo efficacy in patient-derived xenograft models of both alveolar rhabdomyosarcoma (aRMS) and eRMS. Tideglusib had effective on-target pharmacodynamic efficacy, but as a single agent had no effect on tumor progression or myodifferentiation. These results suggest that as monotherapy, GSK3β inhibitors may not be a viable treatment for aRMS or eRMS.


Oncotarget | 2017

Integration of genomic, transcriptomic and functional profiles of aggressive osteosarcomas across multiple species

Lara E. Davis; Sophia Jeng; Matthew N. Svalina; Elaine Huang; Janet Pittsenbarger; Emma L. Cantor; Noah Berlow; Bernard Séguin; Atiya Mansoor; Shannon McWeeney; Charles Keller

In complex, highly unstable genomes such as in osteosarcoma, targeting aberrant checkpoint processes (metabolic, cell cycle or immune) may prove more successful than targeting specific kinase or growth factor signaling pathways. Here, we establish a comparative oncology approach characterizing the most lethal osteosarcomas identified in a biorepository of tumors from three different species: human, mouse and canine. We describe the development of a genetically-engineered mouse model of osteosarcoma, establishment of primary cell cultures from fatal human tumors, and a biorepository of osteosarcoma surgical specimens from pet dogs. We analyzed the DNA mutations, differential RNA expression and in vitro drug sensitivity from two phenotypically-distinct cohorts: tumors with a highly aggressive biology resulting in death from rapidly progressive, refractory metastatic disease, and tumors with a non-aggressive, curable phenotype. We identified ARK5 (AMPK-Related Protein Kinase 5, also referred to as NUAK Family Kinase 1) as a novel metabolic target present in all species, and independent analyses confirmed glucose metabolism as the most significantly aberrant cellular signaling pathway in a model system for highly metastatic tumors. Pathway integration analysis identified Polo Like Kinase 1 (PLK1)-mediated checkpoint adaptation as critical to the survival of a distinctly aggressive osteosarcoma. The tumor-associated macrophage cytokine CCL18 (C-C Motif Chemokine Ligand 18) was significantly over-expressed in aggressive human osteosarcomas, and a clustering of mutations in the BAGE (B Melanoma Antigen) tumor antigen gene family was found. The theme of these features of high risk osteosarcoma is checkpoint adaptations, which may prove both prognostic and targetable.In complex, highly unstable genomes such as in osteosarcoma, targeting aberrant checkpoint processes (metabolic, cell cycle or immune) may prove more successful than targeting specific kinase or growth factor signaling pathways. Here, we establish a comparative oncology approach characterizing the most lethal osteosarcomas identified in a biorepository of tumors from three different species: human, mouse and canine. We describe the development of a genetically-engineered mouse model of osteosarcoma, establishment of primary cell cultures from fatal human tumors, and a biorepository of osteosarcoma surgical specimens from pet dogs. We analyzed the DNA mutations, differential RNA expression and in vitro drug sensitivity from two phenotypically-distinct cohorts: tumors with a highly aggressive biology resulting in death from rapidly progressive, refractory metastatic disease, and tumors with a non-aggressive, curable phenotype. We identified ARK5 (AMPK-Related Protein Kinase 5, also referred to as NUAK Family Kinase 1) as a novel metabolic target present in all species, and independent analyses confirmed glucose metabolism as the most significantly aberrant cellular signaling pathway in a model system for highly metastatic tumors. Pathway integration analysis identified Polo Like Kinase 1 (PLK1)-mediated checkpoint adaptation as critical to the survival of a distinctly aggressive osteosarcoma. The tumor-associated macrophage cytokine CCL18 (C-C Motif Chemokine Ligand 18) was significantly over-expressed in aggressive human osteosarcomas, and a clustering of mutations in the BAGE (B Melanoma Antigen) tumor antigen gene family was found. The theme of these features of high risk osteosarcoma is checkpoint adaptations, which may prove both prognostic and targetable.


bioRxiv | 2018

Probabilistic modeling of personalized drug combinations from integrated chemical screen and molecular data in sarcoma

Noah Berlow; Rishi Rikhi; Mathew Geltzeiler; Jinu Abraham; Matthew N. Svalina; Lara E. Davis; Erin Wise; Maria Mancini; Jonatham Noujaim; Atiya Mansoor; Michael J. Quist; Kevin Matlock; Martin Goros; Brian Hernandez; Yee C Duong; Khin Thway; Tomohide Tsukahara; Jun Nishio; Elaine C. Huang; Susie Airhart; Regina Gandour-Edwards; Robert G. Maki; Robin L. Jones; Joel E. Michalek; Milan Milovancev; Souparno Ghosh; Ranadip Pal; Charles Keller

Cancer patients with advanced disease exhaust available clinical regimens and lack actionable genomic medicine results, leaving a large patient population without effective treatments options when their disease inevitably progresses. To address the unmet clinical need for evidence-based therapy assignment when standard clinical approaches have failed, we have developed a probabilistic computational modeling approach which integrates sequencing data with functional assay data to develop patient-specific combination cancer treatments. This computational modeling approach addresses three major challenges in personalized cancer therapy, which we validate across multiple species via computationally-designed personalized synergistic drug combination predictions, identification of unifying therapeutic targets to overcome intra-tumor heterogeneity, and mitigation of cancer cell resistance and rewiring mechanisms. These proof-of-concept studies support the use of an integrative functional approach to personalized combination therapy prediction for the population of high-risk cancer patients lacking viable clinical options and without actionable DNA sequencing-based therapy.


PLOS ONE | 2018

IL-13 receptors as possible therapeutic targets in diffuse intrinsic pontine glioma

Noah Berlow; Matthew N. Svalina; Michael J. Quist; Teagan P. Settelmeyer; Viktor Zherebitskiy; Mari Kogiso; Lin Qi; Yuchen Du; Cynthia Hawkins; Esther Hulleman; Xiao-Nan Li; Sakir H. Gultekin; Charles Keller

Diffuse intrinsic pontine glioma (DIPG) is a universally fatal childhood cancer of the brain. Despite the introduction of conventional chemotherapy and radiotherapy, improvements in survival have been marginal and long-term survivorship is uncommon. Thus, new targets for therapeutics are critically needed. Early phase clinical trials exploring molecularly-targeted therapies against the epidermal growth factor receptor (EGFR) and novel immunotherapies targeting interleukin receptor-13α2 (IL-13Rα2) have demonstrated activity in this disease. To identify additional therapeutic markers for cell surface receptors, we performed exome sequencing (16 new samples, 22 previously published samples, total 38 with 26 matched normal DNA samples), RNA deep sequencing (17 new samples, 11 previously published samples, total 28 with 18 matched normal RNA samples), and immunohistochemistry (17 DIPG tissue samples) to examine the expression of the interleukin-4 (IL-4) signaling axis components (IL-4, interleukin 13 (IL-13), and their respective receptors IL-4Rα, IL-13Rα1, and IL-13Rα2). In addition, we correlated cytokine and receptor expression with expression of the oncogenes EGFR and c-MET. In DIPG tissues, transcript-level analysis found significant expression of IL-4, IL-13, and IL-13Rα1/2, with strong differential expression of IL-13Rα1/2 in tumor versus normal brain. At the protein level, immunohistochemical studies revealed high content of IL-4 and IL-13Rα1/2 but notably low expression of IL-13. Additionally, a strong positive correlation was observed between c-Met and IL-4Rα. The genomic and transcriptional landscape across all samples was also summarized. These data create a foundation for the design of potential new immunotherapies targeting IL-13 cell surface receptors in DIPG.


PLOS ONE | 2017

EphB4/EphrinB2 therapeutics in Rhabdomyosarcoma

Matthew E. Randolph; Megan M. Cleary; Zia Bajwa; Matthew N. Svalina; Michael C. Young; Atiya Mansoor; Pali Kaur; Martin Goros; Joel E. Michalek; Sunny Xiang; James G. Keck; Valery Krasnoperov; Parkash S. Gill; Charles Keller

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma affecting children and is often diagnosed with concurrent metastases. Unfortunately, few effective therapies have been discovered that improve the long-term survival rate for children with metastatic disease. Here we determined effectiveness of targeting the receptor tyrosine kinase, EphB4, in both alveolar and embryonal RMS either directly through the inhibitory antibody, VasG3, or indirectly by blocking both forward and reverse signaling of EphB4 binding to EphrinB2, cognate ligand of EphB4. Clinically, EphB4 expression in eRMS was correlated with longer survival. Experimentally, inhibition of EphB4 with VasG3 in both aRMS and eRMS orthotopic xenograft and allograft models failed to alter tumor progression. Inhibition of EphB4 forward signaling using soluble EphB4 protein fused with murine serum albumin failed to affect eRMS model tumor progression, but did moderately slow progression in murine aRMS. We conclude that inhibition of EphB4 signaling with these agents is not a viable monotherapy for rhabdomyosarcoma.

Collaboration


Dive into the Matthew N. Svalina's collaboration.

Top Co-Authors

Avatar

Charles Keller

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joel E. Michalek

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Mari Kogiso

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge