Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael J. Quist is active.

Publication


Featured researches published by Michael J. Quist.


Nature | 2012

The mutational landscape of lethal castration-resistant prostate cancer

Catherine S. Grasso; Yi Mi Wu; Dan R. Robinson; Xuhong Cao; Saravana M. Dhanasekaran; Amjad P. Khan; Michael J. Quist; Xiaojun Jing; Robert J. Lonigro; J. Chad Brenner; Irfan A. Asangani; Bushra Ateeq; Sang Y. Chun; Javed Siddiqui; Lee Sam; Matt Anstett; Rohit Mehra; John R. Prensner; Nallasivam Palanisamy; Gregory A Ryslik; Fabio Vandin; Benjamin J. Raphael; Lakshmi P. Kunju; Daniel R. Rhodes; Kenneth J. Pienta; Arul M. Chinnaiyan; Scott A. Tomlins

Characterization of the prostate cancer transcriptome and genome has identified chromosomal rearrangements and copy number gains and losses, including ETS gene family fusions, PTEN loss and androgen receptor (AR) amplification, which drive prostate cancer development and progression to lethal, metastatic castration-resistant prostate cancer (CRPC). However, less is known about the role of mutations. Here we sequenced the exomes of 50 lethal, heavily pre-treated metastatic CRPCs obtained at rapid autopsy (including three different foci from the same patient) and 11 treatment-naive, high-grade localized prostate cancers. We identified low overall mutation rates even in heavily treated CRPCs (2.00 per megabase) and confirmed the monoclonal origin of lethal CRPC. Integrating exome copy number analysis identified disruptions of CHD1 that define a subtype of ETS gene family fusion-negative prostate cancer. Similarly, we demonstrate that ETS2, which is deleted in approximately one-third of CRPCs (commonly through TMPRSS2:ERG fusions), is also deregulated through mutation. Furthermore, we identified recurrent mutations in multiple chromatin- and histone-modifying genes, including MLL2 (mutated in 8.6% of prostate cancers), and demonstrate interaction of the MLL complex with the AR, which is required for AR-mediated signalling. We also identified novel recurrent mutations in the AR collaborating factor FOXA1, which is mutated in 5 of 147 (3.4%) prostate cancers (both untreated localized prostate cancer and CRPC), and showed that mutated FOXA1 represses androgen signalling and increases tumour growth. Proteins that physically interact with the AR, such as the ERG gene fusion product, FOXA1, MLL2, UTX (also known as KDM6A) and ASXL1 were found to be mutated in CRPC. In summary, we describe the mutational landscape of a heavily treated metastatic cancer, identify novel mechanisms of AR signalling deregulated in prostate cancer, and prioritize candidates for future study.


Science Translational Medicine | 2011

Personalized Oncology Through Integrative High-Throughput Sequencing: A Pilot Study

Sameek Roychowdhury; Matthew K. Iyer; Dan R. Robinson; Robert J. Lonigro; Yi Mi Wu; Xuhong Cao; Shanker Kalyana-Sundaram; Lee Sam; O. Alejandro Balbin; Michael J. Quist; Terrence R. Barrette; Jessica Everett; Javed Siddiqui; Lakshmi P. Kunju; Nora M. Navone; John C. Araujo; Patricia Troncoso; Christopher J. Logothetis; Jeffrey W. Innis; David C. Smith; Christopher D. Lao; Scott Y. H. Kim; J. Scott Roberts; Stephen B. Gruber; Kenneth J. Pienta; Moshe Talpaz; Arul M. Chinnaiyan

The mutations present in advanced cancers can be identified by integrative high-throughput sequencing to enable biomarker-driven clinical trials and, ultimately, treatment. First Steps to Personalized Cancer Treatment In an optimistic vision of personalized medicine, each cancer patient is treated with drugs tailored for their particular tumor. This sounds appealing, but is it even possible? Roychowdhury and his colleagues tested this approach by extensively characterizing cancers in several patients and then convening a Sequencing Tumor Board of experts to determine the appropriate treatment. With a combination of whole genome and exome sequencing plus sequencing of transcribed RNA, the authors were able to find informative mutations within 3 to 4 weeks, a short enough time to be useful clinically. To verify that their sequencing strategy would work before testing it on actual patients, they assessed two xenografts established from patients with metastatic prostate cancer. They found that one of these carried the common prostate cancer–specific gene fusion of TMPRSS2 and ERG and another, previously undescribed, gene fusion. Also, the androgen receptor gene was amplified and two tumor suppressors were inactivated. The Board concluded that this pattern of mutations could in theory be treated by combined block of the PI3K and androgen receptor signaling pathways. The authors then turned to an actual patient, a 46 year old with colorectal cancer, who had been unsuccessfully treated. Characterization of his metastatic tumor showed mutations in the oncogene NRAS, the tumor suppressor TP53, aurora kinase A, a myosin heavy chain and the FAS death receptor, plus amplification of CDK8. Of these, the Sequencing Tumor Board concluded that the NRAS and CDK8 aberrations could potentially be matched to clinical trials, although none were available at the time. Similar analysis of another patient with metastatic melanoma revealed a structural rearrangement in CDKN2C and HRas. Although the HRAS mutation has not been described before in melanoma, the Sequencing Tumor Board suggested that combined treatment with PI3K and MEK inhibitors would be suitable for this patient. The good news resulting from these studies was that the patients’ tumors were analyzed with in 24 days for ~


Nature Medicine | 2011

Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer.

Dan R. Robinson; Shanker Kalyana-Sundaram; Yi Mi Wu; Sunita Shankar; Xuhong Cao; Bushra Ateeq; Irfan A. Asangani; Matthew K. Iyer; Christopher A. Maher; Catherine S. Grasso; Robert J. Lonigro; Michael J. Quist; Javed Siddiqui; Rohit Mehra; Xiaojun Jing; Thomas J. Giordano; Michael S. Sabel; Celina G. Kleer; Nallasivam Palanisamy; Rachael Natrajan; Maryou B. Lambros; Jorge S. Reis-Filho; Chandan Kumar-Sinha; Arul M. Chinnaiyan

3600, well within the cost of routine clinical tests. But aspects need improvement: Additional testing for epigenetic and small RNA variants will allow more informative characterization. Sequencing at higher depth or enrichment methods will be needed for tumors of lower purity. And perhaps most important, we need a broader array of clinical trials, as highlighted by the fact that none was available for these two patients. Individual cancers harbor a set of genetic aberrations that can be informative for identifying rational therapies currently available or in clinical trials. We implemented a pilot study to explore the practical challenges of applying high-throughput sequencing in clinical oncology. We enrolled patients with advanced or refractory cancer who were eligible for clinical trials. For each patient, we performed whole-genome sequencing of the tumor, targeted whole-exome sequencing of tumor and normal DNA, and transcriptome sequencing (RNA-Seq) of the tumor to identify potentially informative mutations in a clinically relevant time frame of 3 to 4 weeks. With this approach, we detected several classes of cancer mutations including structural rearrangements, copy number alterations, point mutations, and gene expression alterations. A multidisciplinary Sequencing Tumor Board (STB) deliberated on the clinical interpretation of the sequencing results obtained. We tested our sequencing strategy on human prostate cancer xenografts. Next, we enrolled two patients into the clinical protocol and were able to review the results at our STB within 24 days of biopsy. The first patient had metastatic colorectal cancer in which we identified somatic point mutations in NRAS, TP53, AURKA, FAS, and MYH11, plus amplification and overexpression of cyclin-dependent kinase 8 (CDK8). The second patient had malignant melanoma, in which we identified a somatic point mutation in HRAS and a structural rearrangement affecting CDKN2C. The STB identified the CDK8 amplification and Ras mutation as providing a rationale for clinical trials with CDK inhibitors or MEK (mitogen-activated or extracellular signal–regulated protein kinase kinase) and PI3K (phosphatidylinositol 3-kinase) inhibitors, respectively. Integrative high-throughput sequencing of patients with advanced cancer generates a comprehensive, individual mutational landscape to facilitate biomarker-driven clinical trials in oncology.


Nature Medicine | 2015

Functionally defined therapeutic targets in diffuse intrinsic pontine glioma

Catherine S. Grasso; Yujie Tang; Nathalene Truffaux; Noah Berlow; Lining Liu; Marie Anne Debily; Michael J. Quist; Lara E. Davis; Elaine C. Huang; Pamelyn Woo; Anitha Ponnuswami; Spenser Chen; Tessa Johung; Wenchao Sun; Mari Kogiso; Yuchen Du; Lin Qi; Yulun Huang; Marianne Hütt-Cabezas; Katherine E. Warren; Ludivine Le Dret; Paul S. Meltzer; Hua Mao; Martha Quezado; Dannis G. van Vuurden; Jinu Abraham; Maryam Fouladi; Matthew N. Svalina; Nicholas Wang; Cynthia Hawkins

Breast cancer is a heterogeneous disease that has a wide range of molecular aberrations and clinical outcomes. Here we used paired-end transcriptome sequencing to explore the landscape of gene fusions in a panel of breast cancer cell lines and tissues. We observed that individual breast cancers have a variety of expressed gene fusions. We identified two classes of recurrent gene rearrangements involving genes encoding microtubule-associated serine-threonine kinase (MAST) and members of the Notch family. Both MAST and Notch-family gene fusions have substantial phenotypic effects in breast epithelial cells. Breast cancer cell lines harboring Notch gene rearrangements are uniquely sensitive to inhibition of Notch signaling, and overexpression of MAST1 or MAST2 gene fusions has a proliferative effect both in vitro and in vivo. These findings show that recurrent gene rearrangements have key roles in subsets of carcinomas and suggest that transcriptome sequencing could identify individuals with rare, targetable gene fusions.


Neoplasia | 2015

Development and Validation of a Scalable Next-Generation Sequencing System for Assessing Relevant Somatic Variants in Solid Tumors

Daniel H. Hovelson; Andrew S. McDaniel; Andi K. Cani; Bryan Johnson; Kate Rhodes; Paul D. Williams; Santhoshi Bandla; Geoffrey Bien; Paul Choppa; Fiona Hyland; Rajesh Gottimukkala; Guoying Liu; Manimozhi Manivannan; Jeoffrey Schageman; Efren Ballesteros-Villagrana; Catherine S. Grasso; Michael J. Quist; Venkata Yadati; Anmol Amin; Javed Siddiqui; Bryan L. Betz; Karen E. Knudsen; Kathleen A. Cooney; Felix Y. Feng; Michael H. Roh; Peter S. Nelson; Chia Jen Liu; David G. Beer; Peter Wyngaard; Arul M. Chinnaiyan

Diffuse intrinsic pontine glioma (DIPG) is a fatal childhood cancer. We performed a chemical screen in patient-derived DIPG cultures along with RNA-seq analyses and integrated computational modeling to identify potentially effective therapeutic strategies. The multi–histone deacetylase inhibitor panobinostat demonstrated therapeutic efficacy both in vitro and in DIPG orthotopic xenograft models. Combination testing of panobinostat and the histone demethylase inhibitor GSK-J4 revealed that the two had synergistic effects. Together, these data suggest a promising therapeutic strategy for DIPG.


Molecular Cancer Research | 2015

Next-Gen Sequencing Exposes Frequent MED12 Mutations and Actionable Therapeutic Targets in Phyllodes Tumors

Andi K. Cani; Daniel H. Hovelson; Andrew S. McDaniel; Seth Sadis; Michaela J. Haller; Venkata Yadati; Anmol Amin; Jarred V. Bratley; Santhoshi Bandla; Paul D. Williams; Kate Rhodes; Chia Jen Liu; Michael J. Quist; Daniel Rhodes; Catherine S. Grasso; Celina G. Kleer; Scott A. Tomlins

Next-generation sequencing (NGS) has enabled genome-wide personalized oncology efforts at centers and companies with the specialty expertise and infrastructure required to identify and prioritize actionable variants. Such approaches are not scalable, preventing widespread adoption. Likewise, most targeted NGS approaches fail to assess key relevant genomic alteration classes. To address these challenges, we predefined the catalog of relevant solid tumor somatic genome variants (gain-of-function or loss-of-function mutations, high-level copy number alterations, and gene fusions) through comprehensive bioinformatics analysis of >700,000 samples. To detect these variants, we developed the Oncomine Comprehensive Panel (OCP), an integrative NGS-based assay [compatible with < 20 ng of DNA/RNA from formalin-fixed paraffin-embedded (FFPE) tissues], coupled with an informatics pipeline to specifically identify relevant predefined variants and created a knowledge base of related potential treatments, current practice guidelines, and open clinical trials. We validated OCP using molecular standards and more than 300 FFPE tumor samples, achieving >95% accuracy for KRAS, epidermal growth factor receptor, and BRAF mutation detection as well as for ALK and TMPRSS2:ERG gene fusions. Associating positive variants with potential targeted treatments demonstrated that 6% to 42% of profiled samples (depending on cancer type) harbored alterations beyond routine molecular testing that were associated with approved or guideline-referenced therapies. As a translational research tool, OCP identified adaptive CTNNB1 amplifications/mutations in treated prostate cancers. Through predefining somatic variants in solid tumors and compiling associated potential treatment strategies, OCP represents a simplified, broadly applicable targeted NGS system with the potential to advance precision oncology efforts.


The Journal of Molecular Diagnostics | 2015

Assessing copy number alterations in targeted, amplicon-based next-generation sequencing data.

Catherine S. Grasso; Timothy M Butler; Katherine Rhodes; Michael J. Quist; Tanaya Neff; Stephen R. Moore; Scott A. Tomlins; Erica Reinig; Carol Beadling; Mark Andersen; Christopher L. Corless

Phyllodes tumors are rare fibroepithelial tumors with variable clinical behavior accounting for a small subset of all breast neoplasms, yet little is known about the genetic alterations that drive tumor initiation and/or progression. Here, targeted next-generation sequencing (NGS) was used to identify somatic alterations in formalin-fixed paraffin-embedded (FFPE) patient specimens from malignant, borderline, and benign cases. NGS revealed mutations in mediator complex subunit 12 (MED12) affecting the G44 hotspot residue in the majority (67%) of cases spanning all three histologic grades. In addition, loss-of-function mutations in p53 (TP53) as well as deleterious mutations in the tumor suppressors retinoblastoma (RB1) and neurofibromin 1 (NF1) were identified exclusively in malignant tumors. High-level copy-number alterations (CNA) were nearly exclusively confined to malignant tumors, including potentially clinically actionable gene amplifications in IGF1R and EGFR. Taken together, this study defines the genomic landscape underlying phyllodes tumor development, suggests potential molecular correlates to histologic grade, expands the spectrum of human tumors with frequent recurrent MED12 mutations, and identifies IGF1R and EGFR as potential therapeutic targets in malignant cases. Implications: Integrated genomic sequencing and mutational profiling provides insight into the molecular origin of phyllodes tumors and indicates potential druggable targets in malignant disease. Visual Overview: http://mcr.aacrjournals.org/content/early/2015/04/02/1541-7786.MCR-14-0578/F1.large.jpg. Mol Cancer Res; 13(4); 613–9. ©2015 AACR. Visual Overview


Virchows Archiv | 2015

Tumor evolution and progression in multifocal and paired non-invasive/invasive urothelial carcinoma

Joshua I. Warrick; Daniel H. Hovelson; Anmol Amin; Chia Jen Liu; Andi K. Cani; Andrew S. McDaniel; Venkata Yadati; Michael J. Quist; Alon Z. Weizer; J. Chad Brenner; Felix Y. Feng; Rohit Mehra; Catherine S. Grasso; Scott A. Tomlins

Changes in gene copy number are important in the setting of precision medicine. Recent studies have established that copy number alterations (CNAs) can be detected in sequencing libraries prepared by hybridization-capture, but there has been comparatively little attention given to CNA assessment in amplicon-based libraries prepared by PCR. In this study, we developed an algorithm for detecting CNAs in amplicon-based sequencing data. CNAs determined from the algorithm mirrored those from a hybridization-capture library. In addition, analysis of 14 pairs of matched normal and breast carcinoma tissues revealed that sequence data pooled from normal samples could be substituted for a matched normal tissue without affecting the detection of clinically relevant CNAs (>|2| copies). Comparison of CNAs identified by array comparative genomic hybridization and amplicon-based libraries across 10 breast carcinoma samples showed an excellent correlation. The CNA algorithm also compared favorably with fluorescence in situ hybridization, with agreement in 33 of 38 assessments across four different genes. Factors that influenced the detection of CNAs included the number of amplicons per gene, the average read depth, and, most important, the proportion of tumor within the sample. Our results show that CNAs can be identified in amplicon-based targeted sequencing data, and that their detection can be optimized by ensuring adequate tumor content and read coverage.


Nature Medicine | 2015

Erratum: Functionally defined therapeutic targets in diffuse intrinsic pontine glioma(Nature Medicine (2015) 21 (555-559) DOI: 10.1038/nm.3855)

Catherine S. Grasso; Yujie Tang; Nathalene Truffaux; Noah Berlow; Lining Liu; Marie Anne Debily; Michael J. Quist; Lara E. Davis; Elaine C. Huang; Pamelyn Woo; Anitha Ponnuswami; Spenser Chen; Tessa Johung; Wenchao Sun; Mari Kogiso; Yuchen Du; Lin Qi; Yulun Huang; Marianne Hütt-Cabezas; Katherine E. Warren; Ludivine Le Dret; Paul S. Meltzer; Hua Mao; Martha Quezado; Dannis G. van Vuurden; Jinu Abraham; Maryam Fouladi; Matthew N. Svalina; Nicholas Wang; Cynthia Hawkins

Although multifocal tumors and non-invasive/invasive components are commonly encountered in surgical pathology, their genetic relationship is often poorly characterized. We used next-generation sequencing (NGS) to characterize somatic alterations in a patient with five spatially distinct, high-grade papillary urothelial carcinomas (UCs), with one tumor harboring an underlying invasive component. NGS of 409 cancer-related genes was performed on DNA isolated from formalin-fixed paraffin-embedded (FFPE) blocks representing each papillary tumor (n = 5), the invasive component of one tumor, and matched normal tissue. We identified nine unique non-synonymous somatic mutations across the six UC samples, including five present in each carcinoma sample, consistent with clonal origin and limited intertumoral heterogeneity. Copy number and loss of heterogeneity (LOH) profiles were similar in all six carcinomas; however, the invasive carcinoma component uniquely showed focal CDKN2A loss and chromosome 9 LOH and did not harbor gains of chromosomes 5p or X that were present in the other tumor samples. Phylogenetic analysis supported the invasive component arising from a shared progenitor prior to the outgrowth of cells in the non-invasive tumors. Results were extended to three additional cases of upper tract UC with paired non-invasive/invasive components, which identified driving alterations exclusive to both non-invasive and invasive components. Lastly, we performed targeted RNA sequencing (RNAseq) using a custom bladder cancer panel, which confirmed gene expression signature differences between paired non-invasive/invasive components. The results and approaches presented here may be useful in understanding the clonal relationships in multifocal cancers or paired non-invasive/invasive components from routine FFPE specimens.


Annals of Oncology | 2015

Integrative molecular profiling of routine clinical prostate cancer specimens

Catherine S. Grasso; Andi K. Cani; Daniel H. Hovelson; Michael J. Quist; N. J. Douville; Venkata Yadati; Anmol Amin; Peter S. Nelson; Bryan L. Betz; C-J. Liu; Karen E. Knudsen; Kathleen A. Cooney; Felix Y. Feng; Andrew S. McDaniel; Scott A. Tomlins

Catherine S Grasso, Yujie Tang, Nathalene Truffaux, Noah E Berlow, Lining Liu, Marie-Anne Debily, Michael J Quist, Lara E Davis, Elaine C Huang, Pamelyn J Woo, Anitha Ponnuswami, Spenser Chen, Tessa B Johung, Wenchao Sun, Mari Kogiso, Yuchen Du, Lin Qi, Yulun Huang, Marianne Hütt-Cabezas, Katherine E Warren, Ludivine Le Dret, Paul S Meltzer, Hua Mao, Martha Quezado, Dannis G van Vuurden, Jinu Abraham, Maryam Fouladi, Matthew N Svalina, Nicholas Wang, Cynthia Hawkins, Javad Nazarian, Marta M Alonso, Eric H Raabe, Esther Hulleman, Paul T Spellman, Xiao-Nan Li, Charles Keller, Ranadip Pal, Jacques Grill & Michelle Monje Nat. Med. 21, 555–559 (2015); doi:10.1038/nm.3855; published online 4 May 2015; corrected after print 15 June 2015

Collaboration


Dive into the Michael J. Quist's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rohit Mehra

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge