Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew P. Johnson is active.

Publication


Featured researches published by Matthew P. Johnson.


Biochimica et Biophysica Acta | 2012

The photoprotective molecular switch in the photosystem II antenna.

Alexander V. Ruban; Matthew P. Johnson; Christopher D. P. Duffy

We have reviewed the current state of multidisciplinary knowledge of the photoprotective mechanism in the photosystem II antenna underlying non-photochemical chlorophyll fluorescence quenching (NPQ). The physiological need for photoprotection of photosystem II and the concept of feed-back control of excess light energy are described. The outline of the major component of nonphotochemical quenching, qE, is suggested to comprise four key elements: trigger (ΔpH), site (antenna), mechanics (antenna dynamics) and quencher(s). The current understanding of the identity and role of these qE components is presented. Existing opinions on the involvement of protons, different LHCII antenna complexes, the PsbS protein and different xanthophylls are reviewed. The evidence for LHCII aggregation and macrostructural reorganization of photosystem II and their role in qE are also discussed. The models describing the qE locus in LHCII complexes, the pigments involved and the evidence for structural dynamics within single monomeric antenna complexes are reviewed. We suggest how PsbS and xanthophylls may exert control over qE by controlling the affinity of LHCII complexes for protons with reference to the concepts of hydrophobicity, allostery and hysteresis. Finally, the physics of the proposed chlorophyll-chlorophyll and chlorophyll-xanthophyll mechanisms of energy quenching is explained and discussed. This article is part of a Special Issue entitled: Photosystem II.


The Plant Cell | 2011

Photoprotective Energy Dissipation Involves the Reorganization of Photosystem II Light-Harvesting Complexes in the Grana Membranes of Spinach Chloroplasts

Matthew P. Johnson; Tomasz K. Goral; Christopher D. P. Duffy; Anthony P.R. Brain; Conrad W. Mullineaux; Alexander V. Ruban

The rapidly reversible macrostructural changes in higher-plant chloroplast thylakoid membrane organization accompanying photoprotective energy dissipation (qE) are studied using freeze-fracture electron and laser confocal microscopy. qE is shown to involve the aggregation of light-harvesting complexes and their segregation from photosystem II. Plants must regulate their use of absorbed light energy on a minute-by-minute basis to maximize the efficiency of photosynthesis and to protect photosystem II (PSII) reaction centers from photooxidative damage. The regulation of light harvesting involves the photoprotective dissipation of excess absorbed light energy in the light-harvesting antenna complexes (LHCs) as heat. Here, we report an investigation into the structural basis of light-harvesting regulation in intact spinach (Spinacia oleracea) chloroplasts using freeze-fracture electron microscopy, combined with laser confocal microscopy employing the fluorescence recovery after photobleaching technique. The results demonstrate that formation of the photoprotective state requires a structural reorganization of the photosynthetic membrane involving dissociation of LHCII from PSII and its aggregation. The structural changes are manifested by a reduced mobility of LHC antenna chlorophyll proteins. It is demonstrated that these changes occur rapidly and reversibly within 5 min of illumination and dark relaxation, are dependent on ΔpH, and are enhanced by the deepoxidation of violaxanthin to zeaxanthin.


FEBS Journal | 2008

Photosynthetic acclimation: does the dynamic structure and macro-organisation of photosystem II in higher plant grana membranes regulate light harvesting states?

Peter Horton; Matthew P. Johnson; María L. Pérez-Bueno; Anett Z. Kiss; Alexander V. Ruban

The efficiency of light harvesting in higher plant photosynthesis is regulated in response to external environmental conditions. Under conditions of excess light, the normally highly efficient light‐harvesting system of photosystem II is switched into a state in which unwanted, potentially harmful, energy is dissipated as heat. This process, known as nonphotochemical quenching, occurs by the creation of energy quenchers following conformational change in the light‐harvesting complexes, which is initiated by the build up of the thylakoid pH gradient and controlled by the xanthophyll cycle. In the present study, the evidence to support the notion that this regulatory mechanism is dependent upon the organization of the different antenna subunits in the stacked grana membranes is reviewed. We postulate that nonphotochemical quenching occurs within a structural locus comprising the PsbS subunit and components of the light‐harvesting antenna, CP26, CP24, CP29 and LHCIIb (the major trimeric light‐harvesting complex), formed in response to protonation and controlled by the xanthophyll cycle carotenoids.


Journal of Biological Chemistry | 2007

Elevated zeaxanthin bound to oligomeric LHCII enhances the resistance of Arabidopsis to photooxidative stress by a lipid-protective, antioxidant mechanism.

Matthew P. Johnson; Michel Havaux; Christian Triantaphylidès; Brigitte Ksas; Andrew A. Pascal; Bruno Robert; Paul A. Davison; Alexander V. Ruban; Peter Horton

The xanthophyll cycle has a major role in protecting plants from photooxidative stress, although the mechanism of its action is unclear. Here, we have investigated Arabidopsis plants overexpressing a gene encoding β-carotene hydroxylase, containing nearly three times the amount of xanthophyll cycle carotenoids present in the wild-type. In high light at low temperature wild-type plants exhibited symptoms of severe oxidative stress: lipid peroxidation, chlorophyll bleaching, and photoinhibition. In transformed plants, which accumulate over twice as much zeaxanthin as the wild-type, these symptoms were significantly ameliorated. The capacity of non-photochemical quenching is not significantly different in transformed plants compared with wild-type and therefore an enhancement of this process cannot be the cause of the stress tolerant phenotype. Rather, it is concluded that it results from the antioxidant effect of zeaxanthin. 80–90% of violaxanthin and zeaxanthin in wild-type and transformed plants was localized to an oligomeric LHCII fraction prepared from thylakoid membranes. The binding of these pigments in intact membranes was confirmed by resonance Raman spectroscopy. Based on the structural model of LHCII, we suggest that the protein/lipid interface is the active site for the antioxidant activity of zeaxanthin, which mediates stress tolerance by the protection of bound lipids.


Plant Journal | 2012

Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis

Tomasz K. Goral; Matthew P. Johnson; Christopher D. P. Duffy; Anthony P.R. Brain; Alexander V. Ruban; Conrad W. Mullineaux

We characterized a set of Arabidopsis mutants deficient in specific light-harvesting proteins, using freeze-fracture electron microscopy to probe the organization of complexes in the membrane and confocal fluorescence recovery after photobleaching to probe the dynamics of thylakoid membranes within intact chloroplasts. The same methods were used to characterize mutants lacking or over-expressing PsbS, a protein related to light-harvesting complexes that appears to play a role in regulation of photosynthetic light harvesting. We found that changes in the complement of light-harvesting complexes and PsbS have striking effects on the photosystem II macrostructure, and that these effects correlate with changes in the mobility of chlorophyll proteins within the thylakoid membrane. The mobility of chlorophyll proteins was found to correlate with the extent of photoprotective non-photochemical quenching, consistent with the idea that non-photochemical quenching involves extensive re-organization of complexes in the membrane. We suggest that a key feature of the physiological function of PsbS is to decrease the formation of ordered semi-crystalline arrays of photosystem II in the low-light state. Thus the presence of PsbS leads to an increase in the fluidity of the membrane, accelerating the re-organization of the photosystem II macrostructure that is necessary for induction of non-photochemical quenching.


Plant Physiology | 2008

The Zeaxanthin-Independent and Zeaxanthin-Dependent qE Components of Nonphotochemical Quenching Involve Common Conformational Changes within the Photosystem II Antenna in Arabidopsis

Matthew P. Johnson; María L. Pérez-Bueno; Ahmad Zia; Peter Horton; Alexander V. Ruban

The light-harvesting antenna of higher plant photosystem II (LHCII) has the intrinsic capacity to dissipate excess light energy as heat in a process termed nonphotochemical quenching (NPQ). Recent studies suggest that zeaxanthin and lutein both contribute to the rapidly relaxing component of NPQ, qE, possibly acting in the minor monomeric antenna complexes and the major trimeric LHCII, respectively. To distinguish whether zeaxanthin and lutein act independently as quenchers at separate sites, or alternatively whether zeaxanthin fulfills an allosteric role regulating lutein-mediated quenching, the kinetics of qE and the qE-related conformational changes (ΔA535) were compared in Arabidopsis (Arabidopsis thaliana) mutant/antisense plants with altered contents of minor antenna (kolhcb6, aslhcb4), trimeric LHCII (aslhcb2), lutein (lut2, lut2npq1, lut2npq2), and zeaxanthin (npq1, npq2). The kinetics of the two components of NPQ induction arising from zeaxanthin-independent and zeaxanthin-dependent qE were both sensitive to changes in the protein composition of the photosystem II antenna. The replacement of lutein by zeaxanthin or violaxanthin in the internal Lhcb protein-binding sites affected the kinetics and relative amplitude of each component as well as the absolute chlorophyll fluorescence lifetime. Both components of qE were characterized by a conformational change leading to nearly identical absorption changes in the Soret region that indicated the involvement of the LHCII lutein 1 domain. Based on these observations, we suggest that both components of qE arise from a common quenching mechanism based upon a conformational change within the photosystem II antenna, optimized by Lhcb subunit-subunit interactions and tuned by the synergistic effects of external and internally bound xanthophylls.


Journal of Biological Chemistry | 2008

Induction of Efficient Energy Dissipation in the Isolated Light-harvesting Complex of Photosystem II in the Absence of Protein Aggregation

Cristian Ilioaia; Matthew P. Johnson; Peter Horton; Alexander V. Ruban

Under excess illumination, the Photosystem II light-harvesting antenna of higher plants has the ability to switch into an efficient photoprotective mode, allowing safe dissipation of excitation energy into heat. In this study, we show induction of the energy dissipation state, monitored by chlorophyll fluorescence quenching, in the isolated major light-harvesting complex (LHCII) incorporated into a solid gel system. Removal of detergent caused strong fluorescence quenching, which was totally reversible. Singlet-singlet annihilation and gel electrophoresis experiments suggested that the quenched complexes were in the trimeric not aggregated state. Both the formation and recovery of this quenching state were inhibited by a cross-linker, implying involvement of conformational changes. Absorption and CD measurements performed on the samples in the quenched state revealed specific alterations in the spectral bands assigned to the red forms of chlorophyll a, neoxanthin, and lutein 1 molecules. The majority of these alterations were similar to those observed during LHCII aggregation. This suggests that not the aggregation process as such but rather an intrinsic conformational transition in the complex is responsible for establishment of quenching. 77 K fluorescence measurements showed red-shifted chlorophyll a fluorescence in the 690-705 nm region, previously observed in aggregated LHCII. The fact that all spectral changes associated with the dissipative mode observed in the gel were different from those of the partially denatured complex strongly argues against the involvement of protein denaturation in the observed quenching. The implications of these findings for proposed mechanisms of energy dissipation in the Photosystem II antenna are discussed.


Journal of Biological Chemistry | 2011

Restoration of Rapidly Reversible Photoprotective Energy Dissipation in the Absence of PsbS Protein by Enhanced ΔpH

Matthew P. Johnson; Alexander V. Ruban

Variations in the light environment require higher plants to regulate the light harvesting process. Under high light a mechanism known as non-photochemical quenching (NPQ) is triggered to dissipate excess absorbed light energy within the photosystem II (PSII) antenna as heat, preventing photodamage to the reaction center. The major component of NPQ, known as qE, is rapidly reversible in the dark and dependent upon the transmembrane proton gradient (ΔpH), formed as a result of photosynthetic electron transport. Using diaminodurene and phenazine metasulfate, mediators of cyclic electron flow around photosystem I, to enhance ΔpH, it is demonstrated that rapidly reversible qE-type quenching can be observed in intact chloroplasts from Arabidopsis plants lacking the PsbS protein, previously believed to be indispensible for the process. The qE in chloroplasts lacking PsbS significantly quenched the level of fluorescence when all PSII reaction centers were in the open state (Fo state), protected PSII reaction centers from photoinhibition, was modulated by zeaxanthin and was accompanied by the qE-typical absorption spectral changes, known as ΔA535. Titrations of the ΔpH dependence of qE in the absence of PsbS reveal that this protein affects the cooperativity and sensitivity of the photoprotective process to protons. The roles of PsbS and zeaxanthin are discussed in light of their involvement in the control of the proton-antenna association constant, pK, via regulation of the interconnected phenomena of PSII antenna reorganization/aggregation and hydrophobicity.


FEBS Letters | 2008

The xanthophyll cycle pool size controls the kinetics of non-photochemical quenching in Arabidopsis thaliana

Matthew P. Johnson; Paul A. Davison; Alexander V. Ruban; Peter Horton

Arabidopsis plants overexpressing β‐carotene hydroxylase 1 accumulate over double the amount of zeaxanthin present in wild‐type plants. The final amplitude of non‐photochemical quenching (NPQ) was found to be the same in these plants, but the kinetics were different. The formation and relaxation of NPQ consistently correlated with the de‐epoxidation state of the xanthophyll cycle pool and not the amount of zeaxanthin. These data indicate that zeaxanthin and violaxanthin antagonistically regulate the switch between the light harvesting and photoprotective modes of the light harvesting system and show that control of the xanthophyll cycle pool size is necessary to optimize the kinetics of NPQ.


Biophysical Journal | 2012

Controlled Disorder in Plant Light-Harvesting Complex II Explains Its Photoprotective Role

Tjaart P.J. Krüger; Cristian Ilioaia; Matthew P. Johnson; Alexander V. Ruban; Emmanouil Papagiannakis; Peter Horton; Rienk van Grondelle

The light-harvesting antenna of photosystem II (PSII) has the ability to switch rapidly between a state of efficient light use and one in which excess excitation energy is harmlessly dissipated as heat, a process known as qE. We investigated the single-molecule fluorescence intermittency of the main component of the PSII antenna (LHCII) under conditions that mimic efficient use of light or qE, and we demonstrate that weakly fluorescing states are stabilized under qE conditions. Thus, we propose that qE is explained by biological control over the intrinsic dynamic disorder in the complex-the frequencies of switching establish whether the population of complexes is unquenched or quenched. Furthermore, the quenched states were accompanied by two distinct spectral signatures, suggesting more than one mechanism for energy dissipation in LHCII.

Collaboration


Dive into the Matthew P. Johnson's collaboration.

Top Co-Authors

Avatar

Alexander V. Ruban

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Peter Horton

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher D. P. Duffy

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ahmad Zia

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomasz K. Goral

Queen Mary University of London

View shared research outputs
Researchain Logo
Decentralizing Knowledge