Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew R. Hodges is active.

Publication


Featured researches published by Matthew R. Hodges.


The Journal of Neuroscience | 2008

Defects in Breathing and Thermoregulation in Mice with Near-Complete Absence of Central Serotonin Neurons

Matthew R. Hodges; Glenn J. Tattersall; Michael B. Harris; Sean McEvoy; Diana Richerson; Evan S. Deneris; Randy L. Johnson; Zhou-Feng Chen; George B. Richerson

Serotonergic neurons project widely throughout the CNS and modulate many different brain functions. Particularly important, but controversial, are the contributions of serotonin (5-HT) neurons to respiratory and thermoregulatory control. To better define the roles of 5-HT neurons in breathing and thermoregulation, we took advantage of a unique conditional knock-out mouse in which Lmx1b is genetically deleted in Pet1-expressing cells (Lmx1bf/f/p), resulting in near-complete absence of central 5-HT neurons. Here, we show that the hypercapnic ventilatory response in adult Lmx1bf/f/p mice was decreased by 50% compared with wild-type mice, whereas baseline ventilation and the hypoxic ventilatory response were normal. In addition, Lmx1bf/f/p mice rapidly became hypothermic when exposed to an ambient temperature of 4°C, decreasing core temperature to 30°C within 120 min. This failure of thermoregulation was caused by impaired shivering and nonshivering thermogenesis, whereas thermosensory perception and heat conservation were normal. Finally, intracerebroventricular infusion of 5-HT stimulated baseline ventilation, and rescued the blunted hypercapnic ventilatory response. These data identify a previously unrecognized role of 5-HT neurons in the CO2 chemoreflex, whereby they enhance the response of the rest of the respiratory network to CO2. We conclude that the proper function of the 5-HT system is particularly important under conditions of environmental stress and contributes significantly to the hypercapnic ventilatory response and thermoregulatory cold defense.


The Journal of Neuroscience | 2009

Transgenic Mice Lacking Serotonin Neurons Have Severe Apnea and High Mortality during Development

Matthew R. Hodges; Mackenzie Wehner; Jason Aungst; Jeffrey C. Smith; George B. Richerson

Central serotonin (5-HT) neurons modulate many vital brain functions, including respiratory control. Whether breathing depends critically on 5-HT neurons, or whether their influence is excitatory or inhibitory, remains controversial. Here we show that neonatal Lmx1bflox/flox;ePet-Cre/+ mice (also called Lmx1bf/f/p mice), which selectively lack serotonin neurons, display frequent and severe apnea lasting as long as 55 s. This was associated with a marked decrease in ventilation to less than one-half of normal. These respiratory abnormalities were most severe during the postnatal period, markedly improving by the time the pups were 2–4 weeks old. Despite the severe breathing dysfunction, many of these mice survived, but there was a high perinatal mortality, and those that survived had a decrease in growth rate until the age at which the respiratory defects resolved. Consistent with these in vivo observations, respiratory output was markedly reduced in isolated brainstem–spinal cord preparations from neonatal Lmx1bf/f/p mice and completely blocked in perfused brain preparations from neonatal rats treated with selective antagonists of 5-HT2A and neurokinin 1 (NK-1) receptors. The ventilatory deficits in neonatal Lmx1bf/f/p mice were reversed in vitro and in vivo with agonists of 5-HT2A and/or NK-1 receptors. These results demonstrate that ventilatory output in the neonatal period is critically dependent on serotonin neurons, which provide excitatory drive to the respiratory network via 5-HT2A and NK-1 receptor activation. These findings provide insight into the mechanisms of sudden infant death syndrome, which has been associated with abnormalities of 5-HT neurons and of cardiorespiratory control.


Respiratory Physiology & Neurobiology | 2009

Medullary serotonin neurons and central CO2 chemoreception

Andrea E. Corcoran; Matthew R. Hodges; Yuanming Wu; Wengang Wang; Christie J. Wylie; Evan S. Deneris; George B. Richerson

Serotonergic (5-HT) neurons are putative central respiratory chemoreceptors, aiding in the brains ability to detect arterial changes in PCO2 and implement appropriate ventilatory responses to maintain blood homeostasis. These neurons are in close proximity to large medullary arteries and are intrinsically chemosensitive in vitro, characteristics expected for chemoreceptors. 5-HT neurons of the medullary raphé are stimulated by hypercapnia in vivo, and their disruption results in a blunted hypercapnic ventilatory response. More recently, data collected from transgenic and knockout mice have provided further insight into the role of 5-HT in chemosensitivity. This review summarizes current evidence in support of the hypothesis that 5-HT neurons are central chemoreceptors, and addresses arguments made against this role. We also briefly explore the relationship between the medullary raphé and another chemoreceptive site, the retrotrapezoid nucleus, and discuss how they may interact during hypercapnia to produce a robust ventilatory response.


Respiratory Physiology & Neurobiology | 2008

Contributions of 5-HT neurons to respiratory control: Neuromodulatory and trophic effects

Matthew R. Hodges; George B. Richerson

Serotonin (5-hydroxytryptamine; 5-HT) is a neurotransmitter produced by a small number of neurons in the midbrain, pons and medulla. These neurons project widely throughout the neuraxis, where they release 5-HT and co-localized neuropeptides such as substance P (SP) and thyrotropin-releasing hormone (TRH). Each of these chemicals produce effects largely through G protein-coupled receptors, second messenger systems and subsequent neuromodulatory effects on target neurons. Emerging evidence suggests that 5-HT has additional modes of action during development and in adult mammals, including trophic effects (neurogenesis, cell differentiation, proliferation, migration and maturation) and influences on synaptic plasticity. Here, we discuss some of the neuromodulatory and trophic roles of 5-HT in general and in the context of respiratory control, as well as the regulation of release of modulatory neurotransmitters from 5-HT neurons. Future directions of study are also discussed.


The FASEB Journal | 2013

Transposon-mediated transgenesis, transgenic rescue, and tissue-specific gene expression in rodents and rabbits

Katharina Katter; Aron M. Geurts; Orsolya Ivett Hoffmann; Lajos Mátés; Vladimír Landa; László Hiripi; Carol Moreno; Jozef Lazar; Sanum Bashir; Vaclav Zidek; Elena Popova; Boris Jerchow; Katja Becker; Anantharam Devaraj; Ingrid Walter; Michael Grzybowksi; Molly Corbett; Artur Rangel Filho; Matthew R. Hodges; Michael Bader; Zoltán Ivics; Howard J. Jacob; Michal Pravenec; Zsuzsanna Bősze; Thomas Rülicke; Zsuzsanna Izsvák

Germline transgenesis is an important procedure for functional investigation of biological pathways, as well as for animal biotechnology. We have established a simple, nonviral protocol in three important biomedical model organisms frequently used in physiological studies. The protocol is based on the hyperactive Sleeping Beauty transposon system, SB100X, which reproducibly promoted generation of transgenic founders at frequencies of 50–64, 14–72, and 15% in mice, rats, and rabbits, respectively. The SB100X‐mediated transgene integrations are less prone to genetic mosaicism and gene silencing as compared to either the classical pronuclear injection or to lentivirus‐mediated transgenesis. The method was successfully applied to a variety of transgenes and animal models, and can be used to generate founders with single‐copy integrations. The transposon vector also allows the generation of transgenic lines with tissue‐specific expression patterns specified by promoter elements of choice, exemplified by a rat reporter strain useful for tracking serotonergic neurons. As a proof of principle, we rescued an inborn genetic defect in the fawn‐hooded hypertensive rat by SB100X transgenesis. A side‐by‐side comparison of the SB100X‐ and piggyBac‐based protocols revealed that the two systems are complementary, offering new opportunities in genome manipulation.—Katter, K., Geurts, A. M., Hoffmann, O., Mátés, L., Landa, V., Hiripi, L., Moreno, C., Lazar, J., Bashir, S., Zidek, V., Popova, E., Jerchow, B., Becker, K., Devaraj, A., Walter, I., Grzybowksi, M., Corbett, M., Rangel Filho, A., Hodges, M. R., Bader, M., Ivics, Z., Jacob, H. J., Pravenec, M., Bősze, Z., Rülicke, T., Izsvák, Z. Transposon‐mediated transgenesis, transgenic rescue, and tissue‐specific gene expression in rodents and rabbits. FASEB J. 27, 930–941 (2013). www.fasebj.org


Respiratory Physiology & Neurobiology | 2011

Altered ventilatory and thermoregulatory control in male and female adult Pet-1 null mice

Matthew R. Hodges; Simon R. Best; George B. Richerson

The integrity of the serotonin (5-HT) system is essential to normal respiratory and thermoregulatory control. Male and female transgenic mice lacking central 5-HT neurons (Lmx1b(f/f/p) mice) show a 50% reduction in the hypercapnic ventilatory response and insufficient heat generation when cooled (Hodges and Richerson, 2008a; Hodges et al., 2008b). Lmx1b(f/f/p) mice also show reduced body temperatures (T(body)) and O(2) consumption [Formula: see text] , and breathe less at rest and during hypoxia and hypercapnia when measured below thermoneutrality (24 °C), suggesting a role for 5-HT neurons in integrating ventilatory, thermal and metabolic control. Here, the hypothesis that Pet-1 null mice, which retain 30% of central 5-HT neurons, will demonstrate similar deficits in temperature and ventilatory control was tested. Pet-1 null mice had fewer medullary tryptophan hydroxylase-immunoreactive (TPH(+)) neurons compared to wild type (WT) mice, particularly in the midline raphé. Female (but not male) Pet-1 null mice had lower baseline ventilation (V(E)), breathing frequency (f), [Formula: see text] and T(body) relative to female WT mice (P < 0.05). In addition, V(E) and [Formula: see text] were decreased in male and female Pet-1 null mice during hypoxia and hypercapnia (P < 0.05), but only male Pet-1 null mice showed a significant deficit in the hypercapnic ventilatory response when expressed as % of control (P < 0.05). Finally, male and female Pet-1 null mice showed significant decreases in T(body) when externally cooled to 4 °C. These data demonstrate that a moderate loss of 5-HT neurons leads to a modest attenuation of mechanisms defending body temperature, and that there are gender differences in the contributions of 5-HT neurons to ventilatory and thermoregulatory control.


Respiratory Physiology & Neurobiology | 2008

Interaction between defects in ventilatory and thermoregulatory control in mice lacking 5-HT neurons

Matthew R. Hodges; George B. Richerson

We have previously shown that mice with near-complete absence of 5-HT neurons (Lmx1bf/f/p) display a blunted hypercapnic ventilatory response (HCVR) and impaired cold-induced thermogenesis, but have normal baseline ventilation (), core body temperature (TCore) and hypoxic ventilatory responses (HVR) at warm ambient temperatures (TAmb; 30 degrees C). These results suggest that 5-HT neurons are an important site for integration of ventilatory, metabolic and temperature control. To better define this integrative role, we now determine how a moderate cold stress (TAmb of 25 degrees C) influences ventilatory control in adult Lmx1bf/f/p mice. During whole animal plethysmographic recordings at 25 degreesC, baseline , metabolic rate , and TCore of Lmx1bf/f/p mice were reduced (P < 0.001) compared to wild type (WT) mice. Additionally, the HCVR was reduced in Lmx1bf/f/p mice during normoxic (-33.1%) and hyperoxic (-40.9%) hypercapnia. However, in Lmx1bf/f/p mice was equal to that in WT mice while breathing 10% CO2, indicating that non-5-HT neurons may play a dominant role during extreme hypercapnia. Additionally, ventilation was decreased during hypoxia in Lmx1bf/f/p mice compared to WT mice at 25 degrees C due to decreased TCore. These data suggest that a moderate cold stress in Lmx1bf/f/p mice leads to further dysfunction in ventilatory control resulting from failure to adequately maintain TCore. We conclude that 5-HT neurons contribute to the hypercapnic ventilatory response under physiologic, more than during extreme levels of CO2, and that mild cold stress further compromises ventilatory control in Lmx1bf/f/p mice as a result of defective thermogenesis.


Advances in Experimental Medicine and Biology | 2008

The carotid chemoreceptors are a major determinant of ventilatory CO2 sensitivity and of PaCO2 during eupneic breathing

Hubert V. Forster; Paul Martino; Matthew R. Hodges; Katie Krause; Josh Bonis; S. Davis; L. G. Pan

Both carotid and intracranial chemoreceptors are critical to a normal ventilatory CO2-H+ chemosensitivity. At low levels of hypercapnia, the carotid contribution is probably greater than the central contribution but, at high levels, the intracranial chemoreceptors are dominant. The carotid chemoreceptors are also critical to maintaining a stable and normal eupneic PaCO2, but lesion-induced attenuation of intracranial CO2-H+ chemosensitivity does not consistently alter eupneic PaCO2. A major unanswered question is why do intracranial chemoreceptors in carotid body denervation (CBD) animals tolerate an acidosis during eupnea which prior to CBD elicits a marked increase in breathing.


The Journal of Physiology | 2012

Acute and chronic effects of carotid body denervation on ventilation and chemoreflexes in three rat strains

Gary Mouradian; Hubert V. Forster; Matthew R. Hodges

•  Carbon dioxide (CO2) provides a major chemical stimulus to breathe, primarily through the activity of CO2/pH sensors called chemoreceptors in the brainstem and in the carotid body. •  Carotid body denervation (CBD) causes hypoventilation at rest and reduces ventilatory sensitivity to CO2 in multiple mammalian species, suggesting an important role of the carotid bodies in determining levels of ventilation relative to the CO2 drive to breathe. •  CBD in three strains of adult rats with large inherent differences in CO2 sensitivity causes hypoventilation at rest but has no effect on CO2 sensitivity. •  These data from rats reinforce the concept that the carotid bodies provide a tonic facilitatory drive to breathe, but differ from other species suggesting a minimal contribution of the carotid bodies to CO2 sensitivity in rats.


Respiratory Physiology & Neurobiology | 2011

The effects of lesions in the dorsolateral pons on the coordination of swallowing and breathing in awake goats

Joshua M. Bonis; Suzanne Neumueller; B. D. Marshall; Katie Krause; B. Qian; L. G. Pan; Matthew R. Hodges; Hubert V. Forster

The purpose of this retrospective study was to gain insight into the contribution of the dorsolateral pons to the coordination of swallowing and breathing in awake goats. In 4 goats, cannulas were chronically implanted bilaterally through the lateral (LPBN) and medial (MPBN) parabrachial nuclei just dorsal to the Kölliker-Fuse nucleus (KFN). After >2weeks recovery from this surgery, the goats were studied for 5½h on a control day, and on separate days after receiving 1 and 10μl injections of ibotenic acid (IA) separated by 1week. The frequency of swallows did not change during the control and 1μl IA studies, but after injection of 10μl IA, there was a transient 65% increase in frequency of swallows (P<0.05). Under control conditions swallows occurred throughout the respiratory cycle, where late-E swallows accounted for 67.6% of swallows. The distribution of swallow occurrence throughout the respiratory cycle was unaffected by IA injections. Consistent with the concept that swallowing is dominant over breathing, we found that swallows increased inspiratory (T(I)) and expiratory (T(E)) time and decreased tidal volume (V(T)) of the breath of the swallow (n) and/or the subsequent (n+1) breath. Injections of 10μl IA attenuated the normal increases in T(I) and T(E) and further attenuated V(T) of the n breath. Additionally, E and I swallows reset respiratory rhythm, but injection of 1 or 10μl IA progressively attenuated this resetting, suggesting a decreased dominance over respiratory motor output with increasing IA injections. Post mortem histological analysis revealed about 50% fewer (P<0.05) neurons remained in the KFN, LPBN, and MPBN in lesioned compared to control goats. We conclude that dorsolateral pontine nuclei have a modulatory role in a hypothesized holarchical neural network regulating swallowing and breathing particularly contributing to the normal dominance of swallowing over breathing in both rhythm and motor pattern generation.

Collaboration


Dive into the Matthew R. Hodges's collaboration.

Top Co-Authors

Avatar

Hubert V. Forster

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suzanne Neumueller

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Samantha Olesiak

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Justin Miller

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Clarissa Muere

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. V. Forster

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Paul Martino

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

S. Davis

Medical College of Wisconsin

View shared research outputs
Researchain Logo
Decentralizing Knowledge