Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hubert V. Forster is active.

Publication


Featured researches published by Hubert V. Forster.


Respiratory Physiology & Neurobiology | 2010

An interdependent model of central/peripheral chemoreception: evidence and implications for ventilatory control.

Curtis A. Smith; Hubert V. Forster; Gregory M. Blain; Jerome A. Dempsey

In this review we discuss the implications for ventilatory control of newer evidence suggesting that central and peripheral chemoreceptors are not functionally separate but rather that they are dependent upon one another such that the sensitivity of the medullary chemoreceptors is critically determined by input from the carotid body chemoreceptors and vice versa i.e., they are interdependent. We examine potential interactions of the interdependent central and carotid body (CB) chemoreceptors with other ventilatory-related inputs such as central hypoxia, lung stretch, and exercise. The limitations of current approaches addressing this question are discussed and future studies are suggested.


Comprehensive Physiology | 2012

Control of Breathing During Exercise

Hubert V. Forster; Philippe Haouzi; Jerome A. Dempsey

During exercise by healthy mammals, alveolar ventilation and alveolar-capillary diffusion increase in proportion to the increase in metabolic rate to prevent PaCO2 from increasing and PaO2 from decreasing. There is no known mechanism capable of directly sensing the rate of gas exchange in the muscles or the lungs; thus, for over a century there has been intense interest in elucidating how respiratory neurons adjust their output to variables which can not be directly monitored. Several hypotheses have been tested and supportive data were obtained, but for each hypothesis, there are contradictory data or reasons to question the validity of each hypothesis. Herein, we report a critique of the major hypotheses which has led to the following conclusions. First, a single stimulus or combination of stimuli that convincingly and entirely explains the hyperpnea has not been identified. Second, the coupling of the hyperpnea to metabolic rate is not causal but is due to of these variables each resulting from a common factor which link the circulatory and ventilatory responses to exercise. Third, stimuli postulated to act at pulmonary or cardiac receptors or carotid and intracranial chemoreceptors are not primary mediators of the hyperpnea. Fourth, stimuli originating in exercising limbs and conveyed to the brain by spinal afferents contribute to the exercise hyperpnea. Fifth, the hyperventilation during heavy exercise is not primarily due to lactacidosis stimulation of carotid chemoreceptors. Finally, since volitional exercise requires activation of the CNS, neural feed-forward (central command) mediation of the exercise hyperpnea seems intuitive and is supported by data from several studies. However, there is no compelling evidence to accept this concept as an indisputable fact.


Respiration Physiology | 2000

Important role of carotid chemoreceptor afferents in control of breathing of adult and neonatal mammals

Hubert V. Forster; L. G. Pan; T. F. Lowry; A Serra; Julie Wenninger; Paul Martino

This review provides a summary and prospective on the importance of carotid/peripheral chemoreceptors to the control of breathing during physiologic conditions. For several days after carotid body denervation (CBD), adult mammals hypoventilate (+10 mmHg increase in Pa(CO(2))) at rest and during exercise and CO(2) sensitivity is attenuated by about 60%. In addition, if the rostral ventrolateral medulla is cooled during NREM sleep after CBD, a sustained apnea is observed. Eventually, days or weeks after CBD, a peripheral ventilatory chemoreflex redevelops and there is a normalization of breathing (rest and exercise) and CO(2) sensitivity. The site (s) of the regained chemosensitivity has not been established. This plasticity/redundancy after CBD appears greater in neonates than in adult mammals. These data suggest the carotid and other peripheral chemoreceptors provide an important excitatory input to medullary respiratory neurons that is essential for breathing when wakeful stimuli and central chemoreceptors are absent.


Journal of Applied Physiology | 2010

Contributions of central and peripheral chemoreceptors to the ventilatory response to CO2/H+

Hubert V. Forster; Curtis A. Smith

The major objective of this review is to evaluate existing information and reach conclusions regarding whether there is interaction between P(CO(2))/H(+) stimulation of carotid (peripheral) and intracranial (central) chemoreceptors. Interaction is defined as a ventilatory response to simultaneous changes in the degree of Pco2/H(+) stimulation of both chemoreceptors that is greater (hyperadditive) or less (hypoadditive) than the sum of the responses when stimulation of each set of chemoreceptors is individually altered. Simple summation of the simultaneous changes in stimuli results in no interaction (i.e., additive interaction). Knowledge of the nature of central/peripheral interaction is crucial for determining the physiological significance of newer models of ventilatory control based on recent neuroanatomic observations of the circuitry of key elements of the ventilatory control system. In this review, we will propose that these two sets of receptors are not functionally separate but rather that they are dependent on one another such that the sensitivity of the medullary chemoreceptors is critically determined by input from the peripheral chemoreceptors and possibly other breathing-related reflex afferents as well. The short format of this minireview demands that we be somewhat selective in developing our ideas. We will briefly discuss the limitations of experiments used to study CO(2)/H(+) sensitivity and interaction to date, traditional views of the relative contributions of peripheral and central chemoreceptors to CO(2)/H(+) sensitivity, the evidence for and against different types of interaction, and the effect of tonic carotid chemoreceptor afferent activity on central control mechanisms.


Respiration Physiology | 1997

Effect on breathing of surface ventrolateral medullary cooling in awake, anesthetized and asleep goats

Hubert V. Forster; P. J. Ohtake; L. G. Pan; T. F. Lowry

In adult and neonatal goats, we chronically implanted thermodes on the ventrolateral (VLM) medullary surface to create reversible neuronal dysfunction and thereby gain insight into the role of superficial VLM neurons in control of breathing in anesthetized, awake and asleep states. Consistent with data of others, cooling caudal area M and rostral area S caused sustained apnea under anesthesia. However, in the awake and NREM sleep states, cooling at this site caused only a modest reduction in breathing, indicating that neurons at this site are not critical for respiratory rhythm in these states. Moreover, data in the awake state over multiple conditions suggest neurons at this site do not integrate all intracranial and carotid chemoreception. The data suggest though that neurons at this site have a facilitatory-like effect on breathing both unrelated and related to intracranial chemoreception. We believe that this facilitation serves a function similar to the facilitation provided by the carotid chemoreceptors and by sources associated with wakefulness. Accordingly, elimination/attenuation of any one of these three influences (caudal M rostral S VLM, wakefulness, carotid chemoreception) results in a slight decrease in breathing, removal of two of the three results in a greater decrease in breathing, and removal of all three results in sustained apnea.


Journal of Applied Physiology | 2009

Normal breathing pattern and arterial blood gases in awake and sleeping goats after near total destruction of the presumed pre-Bötzinger complex and the surrounding region

Katie Krause; Hubert V. Forster; Thomas Kiner; S. Davis; Joshua M. Bonis; B. Qian; L. G. Pan

Abrupt neurotoxic destruction of >70% of the pre-Bötzinger complex (preBötzC) in awake goats results in respiratory and cardiac failure (Wenninger JM, Pan LG, Klum L, Leekley T, Bastastic J, Hodges MR, Feroah TR, Davis S, Forster HV. J Appl Physiol 97: 1629-1636, 2004). However, in reduced preparations, rhythmic respiratory activity has been found in other areas of the brain stem (Huang Q, St. John WM. J Appl Physiol 64: 1405-1411, 1988; Janczewski WA, Feldman JL. J Physiol 570: 407-420, 2006; Lieske SP, Thoby-Brisson M, Telgkamo P, Ramierz JM. Nature Neurosci 3: 600-607, 2000; St. John WM, Bledsoe TA. J Appl Physiol 59: 684-690, 1985); thus we hypothesized that, when the preBötzC is destroyed incrementally over weeks, time-dependent plasticity within the respiratory network will result in a respiratory rhythm capable of maintaining normal blood gases. Microtubules were bilaterally implanted into the presumed preBötzC of seven goats. After recovery from surgery, studies were completed to establish baseline values for respiratory parameters. At weekly intervals, increasing volumes (in order 0.5, 1, 5, and 10 microl) of ibotenic acid (IA; 50 mM) were then injected into the preBötzC. All IA injections resulted in an acute tachypnea and dysrhythmia featuring augmented breaths, apneas, and increased breath-to-breath variation in breathing. In studies at night, apneas were nearly all central and occurred in the awake state. Breath-to-breath variation in breathing was greater (P < 0.05) during wakefulness than during non-rapid eye movement sleep. However, one week after the final IA injection, the breathing pattern, breath-to-breath variation, and arterial blood gases and pH were unchanged from baseline, but there was a 20% decrease in respiratory frequency (f) and CO(2) sensitivity (P < 0.05), as well as a 40% decrease in the ventilatory response to hypoxia (P < 0.001). In subsequent histological analysis of the presumed preBötzC region of lesioned goats, it was determined that there was a 90 and 92% reduction from control goats in total and neurokinin-1 receptor neurons, respectively. Therefore, it was concluded that 1) the dysrhythmic effects on breathing are state dependent; and 2) after incremental, near total destruction of the presumed preBötzC region, time-dependent plasticity within the respiratory network provides a rhythm capable of sustaining normal arterial blood gases.


Advances in Experimental Medicine and Biology | 2008

The carotid chemoreceptors are a major determinant of ventilatory CO2 sensitivity and of PaCO2 during eupneic breathing

Hubert V. Forster; Paul Martino; Matthew R. Hodges; Katie Krause; Josh Bonis; S. Davis; L. G. Pan

Both carotid and intracranial chemoreceptors are critical to a normal ventilatory CO2-H+ chemosensitivity. At low levels of hypercapnia, the carotid contribution is probably greater than the central contribution but, at high levels, the intracranial chemoreceptors are dominant. The carotid chemoreceptors are also critical to maintaining a stable and normal eupneic PaCO2, but lesion-induced attenuation of intracranial CO2-H+ chemosensitivity does not consistently alter eupneic PaCO2. A major unanswered question is why do intracranial chemoreceptors in carotid body denervation (CBD) animals tolerate an acidosis during eupnea which prior to CBD elicits a marked increase in breathing.


The Journal of Physiology | 2012

Acute and chronic effects of carotid body denervation on ventilation and chemoreflexes in three rat strains

Gary Mouradian; Hubert V. Forster; Matthew R. Hodges

•  Carbon dioxide (CO2) provides a major chemical stimulus to breathe, primarily through the activity of CO2/pH sensors called chemoreceptors in the brainstem and in the carotid body. •  Carotid body denervation (CBD) causes hypoventilation at rest and reduces ventilatory sensitivity to CO2 in multiple mammalian species, suggesting an important role of the carotid bodies in determining levels of ventilation relative to the CO2 drive to breathe. •  CBD in three strains of adult rats with large inherent differences in CO2 sensitivity causes hypoventilation at rest but has no effect on CO2 sensitivity. •  These data from rats reinforce the concept that the carotid bodies provide a tonic facilitatory drive to breathe, but differ from other species suggesting a minimal contribution of the carotid bodies to CO2 sensitivity in rats.


Respiratory Physiology & Neurobiology | 2011

The effects of lesions in the dorsolateral pons on the coordination of swallowing and breathing in awake goats

Joshua M. Bonis; Suzanne Neumueller; B. D. Marshall; Katie Krause; B. Qian; L. G. Pan; Matthew R. Hodges; Hubert V. Forster

The purpose of this retrospective study was to gain insight into the contribution of the dorsolateral pons to the coordination of swallowing and breathing in awake goats. In 4 goats, cannulas were chronically implanted bilaterally through the lateral (LPBN) and medial (MPBN) parabrachial nuclei just dorsal to the Kölliker-Fuse nucleus (KFN). After >2weeks recovery from this surgery, the goats were studied for 5½h on a control day, and on separate days after receiving 1 and 10μl injections of ibotenic acid (IA) separated by 1week. The frequency of swallows did not change during the control and 1μl IA studies, but after injection of 10μl IA, there was a transient 65% increase in frequency of swallows (P<0.05). Under control conditions swallows occurred throughout the respiratory cycle, where late-E swallows accounted for 67.6% of swallows. The distribution of swallow occurrence throughout the respiratory cycle was unaffected by IA injections. Consistent with the concept that swallowing is dominant over breathing, we found that swallows increased inspiratory (T(I)) and expiratory (T(E)) time and decreased tidal volume (V(T)) of the breath of the swallow (n) and/or the subsequent (n+1) breath. Injections of 10μl IA attenuated the normal increases in T(I) and T(E) and further attenuated V(T) of the n breath. Additionally, E and I swallows reset respiratory rhythm, but injection of 1 or 10μl IA progressively attenuated this resetting, suggesting a decreased dominance over respiratory motor output with increasing IA injections. Post mortem histological analysis revealed about 50% fewer (P<0.05) neurons remained in the KFN, LPBN, and MPBN in lesioned compared to control goats. We conclude that dorsolateral pontine nuclei have a modulatory role in a hypothesized holarchical neural network regulating swallowing and breathing particularly contributing to the normal dominance of swallowing over breathing in both rhythm and motor pattern generation.


Respiratory Physiology & Neurobiology | 2007

The cerebellar fastigial nucleus contributes to CO2-H+ ventilatory sensitivity in awake goats

Paul Martino; S. Davis; C. Opansky; Katie Krause; Joshua M. Bonis; L. G. Pan; B. Qian; Hubert V. Forster

The purpose of this study was to test the hypothesis that an intact cerebellar fastigial nucleus (CFN) is an important determinant of CO(2)-H(+) sensitivity during wakefulness. Bilateral, stainless steel microtubules were implanted into the CFN (N=9) for injection (0.5-10 microl) of the neurotoxin ibotenic acid. Two or more weeks after implantation of the microtubules, eupneic breathing and CO(2)-H(+) sensitivity did not differ significantly (P>0.10) from pre-implantation conditions. Injection of ibotenic acid (50 mM) did not significantly alter eupneic Pa(CO2) (P>0.10). The coefficient of variation of eupneic Pa(CO2) was 4.0+/-0.6 and 3.7+/-0.4% over the 2 weeks before and after the lesion, respectively. CO(2)-H(+) sensitivity expressed as inspired ventilation/Pa(CO2) decreased from 2.15+/-0.17 pre-lesion to 1.58+/-0.26 l/(min mmHg) 3-6 days post-lesion (P<0.02, -27%). There was no significant (P>0.10) recovery of sensitivity between 7 and 10 days post-lesion. The lesion also increased (P<0.05) the day-to-day variability of this index by nearly 100%. When CO(2) sensitivity was expressed as elevated inspired CO(2)/room air V (I), values at 7%, but not 3 and 5% inspired CO(2), were reduced and more variable (P<0.05) after the ibotenic acid injections. We conclude that during wakefulness, the CFN contributes relatively more to overall ventilatory drive at high relative to low levels of hypercapnia.

Collaboration


Dive into the Hubert V. Forster's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew R. Hodges

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Suzanne Neumueller

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

T. F. Lowry

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Justin Miller

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Samantha Olesiak

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Katie Krause

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Clarissa Muere

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Joshua M. Bonis

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

B. Qian

Medical College of Wisconsin

View shared research outputs
Researchain Logo
Decentralizing Knowledge