Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew S. Mizielinski is active.

Publication


Featured researches published by Matthew S. Mizielinski.


Journal of Climate | 2015

Tropical Cyclones in the UPSCALE Ensemble of High-Resolution Global Climate Models*

Malcolm J. Roberts; Pier Luigi Vidale; Matthew S. Mizielinski; Marie-Estelle Demory; Reinhard Schiemann; Jane Strachan; Kevin I. Hodges; Ray Bell; Joanne Camp

AbstractThe U.K. on Partnership for Advanced Computing in Europe (PRACE) Weather-Resolving Simulations of Climate for Global Environmental Risk (UPSCALE) project, using PRACE resources, constructed and ran an ensemble of atmosphere-only global climate model simulations, using the Met Office Unified Model Global Atmosphere 3 (GA3) configuration. Each simulation is 27 years in length for both the present climate and an end-of-century future climate, at resolutions of N96 (130 km), N216 (60 km), and N512 (25 km), in order to study the impact of model resolution on high-impact climate features such as tropical cyclones. Increased model resolution is found to improve the simulated frequency of explicitly tracked tropical cyclones, and correlations of interannual variability in the North Atlantic and northwestern Pacific lie between 0.6 and 0.75. Improvements in the deficit of genesis in the eastern North Atlantic as resolution increases appear to be related to the representation of African easterly waves and t...


Climate Dynamics | 2016

The resolution sensitivity of the South Asian monsoon and Indo-Pacific in a global 0.35° AGCM

Stephanie J. Johnson; Richard C. Levine; Andrew G. Turner; Gill Martin; Steven J. Woolnough; Reinhard Schiemann; Matthew S. Mizielinski; Malcolm J. Roberts; Pier Luigi Vidale; Marie-Estelle Demory; Jane Strachan

The South Asian monsoon is one of the most significant manifestations of the seasonal cycle. It directly impacts nearly one third of the world’s population and also has substantial global influence. Using 27-year integrations of a high-resolution atmospheric general circulation model (Met Office Unified Model), we study changes in South Asian monsoon precipitation and circulation when horizontal resolution is increased from approximately 200–40 km at the equator (N96–N512, 1.9°–0.35°). The high resolution, integration length and ensemble size of the dataset make this the most extensive dataset used to evaluate the resolution sensitivity of the South Asian monsoon to date. We find a consistent pattern of JJAS precipitation and circulation changes as resolution increases, which include a slight increase in precipitation over peninsular India, changes in Indian and Indochinese orographic rain bands, increasing wind speeds in the Somali Jet, increasing precipitation over the Maritime Continent islands and decreasing precipitation over the northern Maritime Continent seas. To diagnose which resolution-related processes cause these changes, we compare them to published sensitivity experiments that change regional orography and coastlines. Our analysis indicates that improved resolution of the East African Highlands results in the improved representation of the Somali Jet and further suggests that improved resolution of orography over Indochina and the Maritime Continent results in more precipitation over the Maritime Continent islands at the expense of reduced precipitation further north. We also evaluate the resolution sensitivity of monsoon depressions and lows, which contribute more precipitation over northeast India at higher resolution. We conclude that while increasing resolution at these scales does not solve the many monsoon biases that exist in GCMs, it has a number of small, beneficial impacts.


Geoscientific Model Development | 2014

High-resolution global climate modelling: the UPSCALE project, a large-simulation campaign

Matthew S. Mizielinski; Malcolm J. Roberts; Pier Luigi Vidale; Reinhard Schiemann; Marie-Estelle Demory; Jane Strachan; T. Edwards; A. Stephens; Bryan N. Lawrence; M. Pritchard; P. Chiu; A. Iwi; J. Churchill; C. del Cano Novales; J. Kettleborough; W. Roseblade; P. Selwood; M. Foster; M. Glover; A. Malcolm

The UPSCALE (UK on PRACE: weatherresolving Simulations of Climate for globAL Environmental risk) project constructed and ran an ensemble of HadGEM3 (Hadley Centre Global Environment Model 3) atmosphereonly global climate simulations over the period 1985–2011, at resolutions of N512 (25 km), N216 (60 km) and N96 (130 km) as used in current global weather forecasting, seasonal prediction and climate modelling respectively. Alongside these present climate simulations a parallel ensemble looking at extremes of future climate was run, using a timeslice methodology to consider conditions at the end of this century. These simulations were primarily performed using a 144 million core hour, single year grant of computing time from PRACE (the Partnership for Advanced Computing in Europe) in 2012, with additional resources supplied by the Natural Environment Research Council (NERC) and the Met Office. Almost 400 terabytes of simulation data were generated on the HERMIT supercomputer at the High Performance Computing Center Stuttgart (HLRS), and transferred to the JASMIN super-data cluster provided by the Science and Technology Facilities Council Centre for Data Archival (STFC CEDA) for analysis and storage. In this paper we describe the implementation of the project, present the technical challenges in terms of optimisation, data output, transfer and storage that such a project involves and include details of the model configuration and the composition of the UPSCALE data set. This data set is available for scientific analysis to allow assessment of the value of model resolution in both present and potential future climate conditions.


Journal of Climate | 2017

The Resolution Sensitivity of Northern Hemisphere Blocking in Four 25-km Atmospheric Global Circulation Models

Reinhard Schiemann; Marie-Estelle Demory; Len Shaffrey; Jane Strachan; Pier Luigi Vidale; Matthew S. Mizielinski; Malcolm J. Roberts; Mio Matsueda; Michael F. Wehner; Thomas Jung

AbstractThe aim of this study is to investigate if the representation of Northern Hemisphere blocking is sensitive to resolution in current-generation atmospheric global circulation models (AGCMs). An evaluation is conducted of how well atmospheric blocking is represented in four AGCMs whose horizontal resolution is increased from a grid spacing of more than 100 km to about 25 km. It is shown that Euro-Atlantic blocking is simulated overall more credibly at higher resolution (i.e., in better agreement with a 50-yr reference blocking climatology created from the reanalyses ERA-40 and ERA-Interim). The improvement seen with resolution depends on the season and to some extent on the model considered. Euro-Atlantic blocking is simulated more realistically at higher resolution in winter, spring, and autumn, and robustly so across the model ensemble. The improvement in spring is larger than that in winter and autumn. Summer blocking is found to be better simulated at higher resolution by one model only, with li...


Journal of Climate | 2014

A new index for the Atlantic Meridional Overturning Circulation at 26°N

Aurelie Duchez; Joël J.-M. Hirschi; S. A. Cunningham; Adam T. Blaker; Harry L. Bryden; B. de Cuevas; C. P. Atkinson; Gerard D. McCarthy; Eleanor Frajka-Williams; D. Rayner; David A. Smeed; Matthew S. Mizielinski

AbstractThe Atlantic meridional overturning circulation (AMOC) has received considerable attention, motivated by its major role in the global climate system. Observations of AMOC strength at 26°N made by the Rapid Climate Change (RAPID) array provide the best current estimate of the state of the AMOC. The period 2004–11 when RAPID AMOC is available is too short to assess decadal variability of the AMOC. This modeling study introduces a new AMOC index (called AMOCSV) at 26°N that combines the Florida Straits transport, the Ekman transport, and the southward geostrophic Sverdrup transport. The main hypothesis in this study is that the upper midocean geostrophic transport calculated using the RAPID array is also wind-driven and can be approximated by the geostrophic Sverdrup transport at interannual and longer time scales. This index is expected to reflect variations in the AMOC at interannual to decadal time scales. This estimate of the surface branch of the AMOC can be constructed as long as reliable measu...


Geophysical Research Letters | 2016

Sahel decadal rainfall variability and the role of model horizontal resolution

Michael Vellinga; Malcolm J. Roberts; Pier Luigi Vidale; Matthew S. Mizielinski; Marie-Estelle Demory; Reinhard Schiemann; Jane Strachan; Caroline Bain

Substantial low-frequency rainfall fluctuations occurred in the Sahel throughout the twentieth century, causing devastating drought. Modeling these low-frequency rainfall fluctuations has remained problematic for climate models for many years. Here we show using a combination of state-of-the-art rainfall observations and high-resolution global climate models that changes in organized heavy rainfall events carry most of the rainfall variability in the Sahel at multiannual to decadal time scales. Ability to produce intense, organized convection allows climate models to correctly simulate the magnitude of late-twentieth century rainfall change, underlining the importance of model resolution. Increasing model resolution allows a better coupling between large-scale circulation changes and regional rainfall processes over the Sahel. These results provide a strong basis for developing more reliable and skilful long-term predictions of rainfall (seasons to years) which could benefit many sectors in the region by allowing early adaptation to impending extremes.


Geophysical Research Letters | 2016

Impact of ocean resolution on coupled air-sea fluxes and large-scale climate

Malcolm J. Roberts; Helene T. Hewitt; Pat Hyder; David Ferreira; Simon A. Josey; Matthew S. Mizielinski; Ann Shelly

Air-sea fluxes are a crucial component in the energetics of the global climate system. The largest air-sea fluxes occur in regions of high sea surface temperature variability, such as ocean boundary, frontal currents and eddies. In this paper we explore the importance of ocean model resolution to resolve air-sea flux relationships in these areas. We examine the SST-wind stress relationship in high-pass filtered observations and two versions of the Met Office climate model with eddy-permitting and eddy-resolving ocean resolution. Eddy-resolving resolution shows marginal improvement in the relationship over eddy-permitting resolution. However, by focussing on the North Atlantic we show that the eddy-resolving model has significant enhancement of latent heat loss over the North Atlantic Current region, a long-standing model bias. While eddy-resolving resolution does not change the air-sea flux relationship at small scale, the impact on the mean state has important implications for the reliability of future climate projections.


Tellus A: Dynamic Meteorology and Oceanography | 2017

Monsoon intra-seasonal variability in a high-resolution version of Met Office Global Coupled model

Yongjie Fang; Peili Wu; Matthew S. Mizielinski; Malcolm J. Roberts; Bo Li; Xiaoge Xin; Xiangwen Liu

Abstract Intra-seasonal oscillation (ISO) is a key ingredient of the East Asia and western North Pacific (EAWNP) summer monsoon and particularly important for seasonal forecast. This paper evaluates the seasonal means and ISOs of the EAWNP summer monsoon simulated by the latest version of the Met Office Global Coupled Model (HadGEM3-GC2) with two different atmospheric model resolutions at ~130 and ~25 km coupled to a same 0.25° × 0.25° resolution ocean model. Results show that the mean states of sea surface temperature (SST), low-level specific humidity and the western Pacific subtropical high are all improved in HadGEM3-GC2 with higher atmosphere resolution. Moreover, although ISO variance is overestimated over the western North Pacific, the model has good fidelity in characterising ISO basic features over the EAWNP including the dominant EOF structure, northward propagation and cycle evolution, as well as the zonal displacement of western Pacific Subtropical High and South Asian High associated with the northward propagating ISOs. Increasing atmosphere model resolution yields improvements in most aspects of the Monsoon ISO over the EAWNP, especially for its northward propagation. Further analysis indicates that this improvement is mainly due to the better description of ISO-related air–sea interaction in higher resolution experiment, as evidenced by the enhanced intra-seasonal SST variance and more coherent northward propagation of rainfall, SST, and the associated surface dynamic and thermodynamic variables in the higher resolution model.


Climate Dynamics | 2014

The role of horizontal resolution in simulating drivers of the global hydrological cycle

Marie-Estelle Demory; Pier Luigi Vidale; Malcolm J. Roberts; Paul Berrisford; Jane Strachan; Reinhard Schiemann; Matthew S. Mizielinski


Geoscientific Model Development | 2016

High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6

Reindert J. Haarsma; Malcolm J. Roberts; Pier Luigi Vidale; C. A. Senior; Alessio Bellucci; Qing Bao; Ping Chang; S. Corti; Neven S. Fučkar; Virginie Guemas; Jost von Hardenberg; Wilco Hazeleger; Chihiro Kodama; Torben Koenigk; L. Ruby Leung; Jian Lu; Jing-Jia Luo; Jiafu Mao; Matthew S. Mizielinski; Ryo Mizuta; Paulo Nobre; Masaki Satoh; Enrico Scoccimarro; Tido Semmler; Justin Small; Jin Song von Storch

Collaboration


Dive into the Matthew S. Mizielinski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Li

China Meteorological Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge