Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew Soman is active.

Publication


Featured researches published by Matthew Soman.


Proceedings of SPIE | 2014

Design and characterisation of the new CIS115 sensor for JANUS, the high resolution camera on JUICE

Matthew Soman; Andrew D. Holland; Konstantin D. Stefanov; Jason Gow; M. R. Leese; Jérôme Pratlong; Peter Turner

JUICE, the Jupiter Icy Moon Explorer, is a European Space Agency L-class mission destined for the Jovian system. Due for launch in 2022, it will begin a science phase after its transit to Jupiter that will include detailed investigations of three of the Galilean moons: Ganymede, Callisto and Europa. JUICE will carry payloads to characterise the Jovian environments, divided into in situ, geophysical and remote sensing packages. A key instrument in the remote sensing package is JANUS, an optical camera operating over a wavelength range of 350 nm to 1064 nm. JANUS will be used to study the external layers of Jupiter’s atmosphere, the ring system and the planetary bodies. To achieve the science goals, resolutions of better than 5 m per pixel are required for the highest resolution observations during the 200 km altitude orbit of Ganymede, whilst the system is operated with a signal to noise ratio of better than 100. Jupiter’s magnetic field is a dominant object in the solar system, trapping electrons and other charged particles leading to the radiation environment around Jupiter being very hostile, especially in the regions closest to Jupiter in the Ganymede orbit. The radiation tolerance of the focal plane detector in JANUS is therefore a major concern and radiation testing is vital to confirm its expected performance after irradiation will meet requirements set by the science goals. JANUS will be using a detector from e2v technologies plc, the CMOS Imaging Sensor 115 (CIS115), which is a device manufactured using 0.18 μm Imaging CMOS Process with a 2000 by 1504 pixel array each 7 μm square. The pixels have a 4T pinned photodiode pixel architecture, and the array is read out through four differential analogue outputs. This paper describes the preliminary characterisation of the CIS115, and results obtained with the CIS107 precursor sensor.


Journal of Instrumentation | 2013

Improving the spatial resolution of soft X-ray detection using an Electron-Multiplying Charge-Coupled Device

Matthew Soman; David J. Hall; James H. Tutt; Neil J. Murray; Andrew D. Holland; Thorsten Schmitt; J Raabe; B Schmitt

The Super Advanced X-ray Emission Spectrometer (SAXES) is an instrument at the Swiss Light Source designed for Resonant Inelastic X-ray Scattering with an energy resolution (E/ΔE) better than 12000 at 930 eV. Improvements to the instrument have been predicted that could allow the energy resolution to be improved by a factor of two. To achieve this, the spatial resolution of the detector (currently a Charge-Coupled Device, CCD) over which the energy spectrum is dispersed would have to be improved to better than 5 μm. X-ray photons with energies between a few hundred to a few thousand electron volts primarily interact within the field-free region of back-illuminated CCDs, where each photon forms an electron cloud that diffuses isotropically before reaching the depleted region close to the electrodes. Each photons electron cloud is likely to be detected as an event with signal split across multiple pixels. Analysing these split events using centroiding techniques allows the photons interaction position to be determined to a sub-pixel level. PolLux is a soft X-ray microspectroscopy endstation at the Swiss Light Source that can focus 200 eV to 1200 eV X-rays to a spot size of approximately 20 nm. Previous studies using data taken with a linear scan across the centre of a pixel in 3 μm steps predicted an improved resolution by applying centroiding techniques and using an Electron-Multiplying CCD (EM-CCD). In this study, a full 2D map of the centroiding accuracy in the pixel is presented, formed by rastering in two dimensions across the image plane in single micron steps. The improved spatial resolution from centroiding events in the EM-CCD in all areas of the pixel over the standard CCD is attributed to the improved signal to noise ratio provided by the multiplication register even at high pixel readout speeds (tens of MHz).


Proceedings of SPIE | 2015

The impact of radiation damage on photon counting with an EMCCD for the WFIRST-AFTA coronagraph

Nathan Bush; David J. Hall; Andrew D. Holland; Ross Burgon; Neil J. Murray; Jason Gow; Matthew Soman; Douglas Jordan; Richard T. Demers; Leon K. Harding; Michael E. Hoenk; Darren Michaels; Bijan Nemati; Pavani Peddada

WFIRST-AFTA is a 2.4m class NASA observatory designed to address a wide range of science objectives using two complementary scientific payloads. The Wide Field Instrument (WFI) offers Hubble quality imaging over a 0.28 square degree field of view, and will gather NIR statistical data on exoplanets through gravitational microlensing. The second instrument is a high contrast coronagraph that will carry out the direct imaging and spectroscopic analysis of exoplanets, providing a means to probe the structure and composition of planetary systems. The coronagraph instrument is expected to operate in low photon flux for long integration times, meaning all noise sources must be kept to a minimum. In order to satisfy the low noise requirements, the Electron Multiplication (EM)-CCD has been baselined for both the imaging and spectrograph cameras. The EMCCD was selected in comparison with other candidates because of its low effective electronic read noise at sub-electron values with appropriate multiplication gain setting. The presence of other noise sources, however, such as thermal dark signal and Clock Induced Charge (CIC), need to be characterised and mitigated. In addition, operation within a space environment will subject the device to radiation damage that will degrade the Charge Transfer Efficiency (CTE) of the device throughout the mission lifetime. Here we present our latest results from pre- and post-irradiation testing of the e2v CCD201-20 BI EMCCD sensor, baselined for the WFIRST-AFTA coronagraph instrument. A description of the detector technology is presented, alongside considerations for operation within a space environment. The results from a room temperature irradiation are discussed in context with the nominal operating requirements of AFTA-C and future work which entails a cryogenic irradiation of the CCD201-20 is presented.


Proceedings of SPIE | 2014

The JANUS camera onboard JUICE mission for Jupiter system optical imaging

Vincenzo Della Corte; N. Schmitz; M. Zusi; José María Bermúdez de Castro; M. R. Leese; Stefano Debei; Demetrio Magrin; Harald Michalik; P. Palumbo; R. Jaumann; G. Cremonese; Harald Hoffmann; Andrew D. Holland; Luisa M. Lara; Björn Fiethe; Enrico Friso; Davide Greggio; M. Herranz; Alexander Koncz; Alexander Lichopoj; Ignacio Martinez-Navajas; Elena Mazzotta Epifani; Harald Michaelis; Roberto Ragazzoni; Thomas Roatsch; Julio Rodrigo; Emilio Rodriguez; Pietro Schipani; Matthew Soman; Mirco Zaccariotto

JANUS (Jovis, Amorum ac Natorum Undique Scrutator) is the visible camera selected for the ESA JUICE mission to the Jupiter system. Resources constraints, S/C characteristics, mission design, environment and the great variability of observing conditions for several targets put stringent constraints on instrument architecture. In addition to the usual requirements for a planetary mission, the problem of mass and power consumption is particularly stringent due to the long-lasting cruising and operations at large distance from the Sun. JANUS design shall cope with a wide range of targets, from Jupiter atmosphere, to solid satellite surfaces, exosphere, rings, and lightning, all to be observed in several color and narrow-band filters. All targets shall be tracked during the mission and in some specific cases the DTM will be derived from stereo imaging. Mission design allows a quite long time range for observations in Jupiter system, with orbits around Jupiter and multiple fly-bys of satellites for 2.5 years, followed by about 6 months in orbit around Ganymede, at surface distances variable from 104 to few hundreds km. Our concept was based on a single optical channel, which was fine-tuned to cover all scientific objectives based on low to high-resolution imaging. A catoptric telescope with excellent optical quality is coupled with a rectangular detector, avoiding any scanning mechanism. In this paper the present JANUS design and its foreseen scientific capabilities are discussed.


Journal of Instrumentation | 2015

Non-linear responsivity characterisation of a CMOS Active Pixel Sensor for high resolution imaging of the Jovian system

Matthew Soman; Konstantin D. Stefanov; Daniel Weatherill; Andrew D. Holland; Jason Gow; M. R. Leese

The Jovian system is the subject of study for the Jupiter Icy Moon Explorer (JUICE), an ESA mission which is planned to launch in 2022. The scientific payload is designed for both characterisation of the magnetosphere and radiation environment local to the spacecraft, as well as remote characterisation of Jupiter and its satellites. A key instrument on JUICE is the high resolution and wide angle camera, JANUS, whose main science goals include detailed characterisation and study phases of three of the Galilean satellites, Ganymede, Callisto and Europa, as well as studies of other moons, the ring system, and irregular satellites. The CIS115 is a CMOS Active Pixel Sensor from e2v technologies selected for the JANUS camera. It is fabricated using 0.18 μ m CMOS imaging sensor process, with an imaging area of 2000 × 1504 pixels, each 7 μ m square. A 4T pixel architecture allows for efficient correlated double sampling, improving the readout noise to better than 8 electrons rms, whilst the sensor is operated in a rolling shutter mode, sampling at up to 10 Mpixel/s at each of the four parallel outputs.A primary parameter to characterise for an imaging device is the relationship that converts the sensors voltage output back to the corresponding number of electrons that were detected in a pixel, known as the Charge to Voltage Factor (CVF). In modern CMOS sensors with small feature sizes, the CVF is known to be non-linear with signal level, therefore a signal-dependent measurement of the CIS115s CVF has been undertaken and is presented here. The CVF is well modelled as a quadratic function leading to a measurement of the maximum charge handling capacity of the CIS115 to be 3.4 × 104 electrons. If the CIS115s response is assumed linear, its CVF is 21.1 electrons per mV (1/47.5 μ V per electron).


Proceedings of SPIE | 2013

High-resolution soft x-ray spectrometry using the electron-multiplying charge-coupled device (EM-CCD)

David J. Hall; James H. Tutt; Matthew Soman; Andrew D. Holland; Neil J. Murray; Bernd Schmitt; Thorsten Schmitt

The Electron-Multiplying Charge-Coupled Device (EM-CCD) shares a similar structure to the CCD except for the inclusion of a gain register that multiplies signal before the addition of read-noise, offering sub-electron effective readnoise at high frame-rates. EM-CCDs were proposed for the dispersive spectrometer on the International X-ray Observatory (IXO) to bring sub-300 eV X-rays above the noise, increasing the science yield. The high-speed, low-noise performance of the EMCCD brought added advantages of reduced dark current and stray-light per frame, reducing cooling and filtering requirements. To increase grating efficiency, several diffracted spectral orders were co-located so the inherent energy resolution of the detector was required for order separation. Although the spectral resolution of the EM-CCD is degraded by the gain process, it was shown that the EM-CCD could achieve the required separation. The RIXS spectrometer at the Advanced Resonant Spectroscopy beamline (ADRESS) of the Swiss Light Source (SLS) at the Paul Scherrer Institute currently uses a CCD, with charge spreading between pixels limiting the spatial resolution to 24 μm (FWHM). Through improving the spatial resolution below 5 μm alongside upgrading the grating, a factor of two energy resolution improvement could theoretically be made. With the high-speed, low-noise performance of the EM-CCD, photon-counting modes could allow the use of centroiding techniques to improve the resolution. Using various centroiding techniques, a spatial resolution of 2 μm (FWHM) has been achieved experimentally, demonstrating the benefits of this detector technology for soft X-ray spectrometry. This paper summarises the use of EM-CCDs from our first investigations for IXO through to our latest developments in ground-based testing for synchrotron-research and looks beyond to future possibilities.


Proceedings of SPIE | 2016

Development of the x-ray camera for the OGRE sub-orbital rocket

Matthew R. Lewis; Matthew Soman; Andrew D. Holland; Neil J. Murray; David J. Hall; Daniel Weatherill; James H. Tutt; Randall L. McEntaffer; Casey T. DeRoo; Ted Schultz; Karen Holland

Current theories regarding the matter composition of the universe suggest that half of the expected baryonic matter is missing. One region this could be residing in is intergalactic filaments which absorb strongly in the X-ray regime. Present space based technology is limited when it comes to imaging at these wavelengths and so new techniques are required. The Off-Plane Grating Rocket Experiment (OGRE) aims to produce the highest resolution spectrum of the binary star system Capella, a well-known X-ray source, in the soft X-ray range (0.2keV to 2keV). This will be achieved using a specialised payload combining three low technology readiness level components placed on-board a sub-orbital rocket. These three components consist of an array of large format off-plane X-ray diffraction gratings, a Wolter Type 1 mirror made using single crystal silicon, and the use of EM-CCDs to capture soft X-rays. Each of these components have been previously reviewed with OGRE being the first project to utilise them in a space observation mission. This paper focuses on the EM-CCDs (CCD207-40 by e2v) that will be used and their optimisation with a camera purposely designed for OGRE. Electron Multiplying gain curves were produced for the back-illuminated devices at -80C. Further tests which will need to be carried out are discussed and the impact of the OGRE mission on future projects mentioned.


Proceedings of SPIE | 2015

Proton irradiation of the CIS115 for the JUICE mission

Matthew Soman; Edgar A. H. Allanwood; Andrew D. Holland; G. P. Winstone; Jason Gow; Konstantin D. Stefanov; M. R. Leese

The CIS115 is one of the latest CMOS Imaging Sensors designed by e2v technologies, with 1504x2000 pixels on a 7 μm pitch. Each pixel in the array is a pinned photodiode with a 4T architecture, achieving an average dark current of 22 electrons pixel-1 s-1 at 21°C measured in a front-faced device. The sensor aims for high optical sensitivity by utilising e2v’s back-thinning and processing capabilities, providing a sensitive silicon thickness approximately 9 μm to 12 μm thick with a tuned anti-reflective coating. The sensor operates in a rolling shutter mode incorporating reset level subtraction resulting in a mean pixel readout noise of 4.25 electrons rms. The full well has been measured to be 34000 electrons in a previous study, resulting in a dynamic range of up to 8000. These performance characteristics have led to the CIS115 being chosen for JANUS, the high-resolution and wide-angle optical camera on the JUpiter ICy moon Explorer (JUICE). The three year science phase of JUICE is in the harsh radiation environment of the Jovian magnetosphere, primarily studying Jupiter and its icy moons. Analysis of the expected radiation environment and shielding levels from the spacecraft and instrument design predict the End Of Life (EOL) displacement and ionising damage for the CIS115 to be equivalent to 1010 10 MeV protons cm-2 and 100 krad(Si) respectively. Dark current and image lag characterisation results following initial proton irradiations are presented, detailing the initial phase of space qualification of the CIS115. Results are compared to the pre-irradiation performance and the instrument specifications and further qualification plans are outlined.


Proceedings of SPIE | 2015

Proton-induced Random Telegraph Signal in the CMOS imaging sensor for JANUS, the visible imaging telescope on JUICE

G. P. Winstone; Matthew Soman; Edgar A. H. Allanwood; Andrew D. Holland; Jason Gow; Konstantin D. Stefanov; M. R. Leese

JUpiter ICy moons Explorer (JUICE) is an ESA L class mission due for launch in 2022 as part of the agency’s Cosmic Vision program [1][2]. The primary science goal is to explore and characterise Jupiter and several of its potentially habitable icy moons, particularly Ganymede, Europa and Callisto. The JANUS instrument is designated to be the scientific imager on-board the spacecraft with a wavelength range between 400 nm and 1000 nm and consists of a catoptric telescope coupled to a CMOS detector [3], specifically the CIS115 monolithic active pixel sensor supplied by e2v technologies[3]. A CMOS sensor has been chosen due to a combination of the high radiation tolerance required for all systems aboard the spacecraft and its capability of operating with integration times as low as 1 ms, which is required to prevent blur when imaging the moons at fast ground velocities since the camera has no mechanical shutter. However, an important consideration of using CMOS in high radiation environments is the generation of defects or defect clusters that result in pixels exhibiting Random Telegraph Signal (RTS)[5]. A study of RTS effects in the CIS115 has been undertaken, and the method applied to identify pixels in the array that display RTS behaviour is discussed and individual RTS-exhibiting pixels are characterised. The changes observed in RTS behaviour following irradiation of the CIS115 with protons is presented and the temperature dependence of the RTS behaviour is studied. The implications on the camera design and imaging requirements of the mission are examined.


Journal of Instrumentation | 2012

Electron-multiplying CCDs for future soft X-ray spectrometers

James H. Tutt; Andrew D. Holland; Neil J. Murray; Richard D. Harriss; David J. Hall; Matthew Soman

CCDs have been used in several high resolution soft X-ray spectrometers for both space and terrestrial applications such as the Reflection Grating Spectrometer on XMM-Newton and the Super Advanced X-ray Emission Spectrometer at the Paul Scherrer Institut in Switzerland. However, with their ability to use multiplication gain to amplify signal and suppress readout noise, EM-CCDs are being considered instead of CCDs for future soft X-ray spectrometers. When detecting low energy X-rays, EM-CCDs are able to increase the Signal-to-Noise ratio of the device, making the X-rays much easier to detect. If the signal is also significantly split between neighbouring pixels, the increase in the size of the signal will make complete charge collection and techniques such as centroiding easier to accomplish. However, multiplication gain from an EM-CCD does cause a degradation of the energy resolution of the device and there are questions about how the high field region in an EM-CCD will behave over time in high radiation environments. This paper analyses the possible advantages and disadvantages of using EM-CCDs for high resolution soft X-ray spectroscopy and suggests in which situations using them would not only be possible, but also beneficial to the instrument.

Collaboration


Dive into the Matthew Soman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil J. Murray

Brunel University London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Randall L. McEntaffer

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge