Matthew T. Aliota
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthew T. Aliota.
Nature Communications | 2016
Dawn M. Dudley; Matthew T. Aliota; Emma L. Mohr; Andrea M. Weiler; Gabrielle Lehrer-Brey; Kim L. Weisgrau; Mariel S. Mohns; Meghan E. Breitbach; Mustafa N. Rasheed; Christina M. Newman; Dane D. Gellerup; Louise H. Moncla; Jennifer Post; Nancy Schultz-Darken; Michele L. Schotzko; Jennifer M. Hayes; Josh Eudailey; M. Anthony Moody; Sallie R. Permar; Shelby L. O’Connor; Eva G. Rakasz; Heather A. Simmons; Saverio Capuano; Thaddeus G. Golos; Jorge E. Osorio; Thomas C. Friedrich; David H. O’Connor
Infection with Asian-lineage Zika virus (ZIKV) has been associated with Guillain–Barré syndrome and fetal abnormalities, but the underlying mechanisms remain poorly understood. Animal models of infection are thus urgently needed. Here we show that rhesus macaques are susceptible to infection by an Asian-lineage ZIKV closely related to strains currently circulating in the Americas. Following subcutaneous inoculation, ZIKV RNA is detected in plasma 1 day post infection (d.p.i.) in all animals (N=8, including 2 pregnant animals), and is also present in saliva, urine and cerebrospinal fluid. Non-pregnant and pregnant animals remain viremic for 21 days and for up to at least 57 days, respectively. Neutralizing antibodies are detected by 21 d.p.i. Rechallenge 10 weeks after the initial challenge results in no detectable virus replication, indicating protective immunity against homologous strains. Therefore, Asian-lineage ZIKV infection of rhesus macaques provides a relevant animal model for studying pathogenesis and evaluating potential interventions against human infection, including during pregnancy.
PLOS Neglected Tropical Diseases | 2016
Matthew T. Aliota; Elizabeth A. Caine; Emma C. Walker; Katrina E. Larkin; Erwin Camacho; Jorge E. Osorio
Background Mosquito-borne Zika virus (ZIKV) typically causes a mild and self-limiting illness known as Zika fever, which often is accompanied by maculopapular rash, headache, and myalgia. During the current outbreak in South America, ZIKV infection during pregnancy has been hypothesized to cause microcephaly and other diseases. The detection of ZIKV in fetal brain tissue supports this hypothesis. Because human infections with ZIKV historically have remained sporadic and, until recently, have been limited to small-scale epidemics, neither the disease caused by ZIKV nor the molecular determinants of virulence and/or pathogenicity have been well characterized. Here, we describe a small animal model for wild-type ZIKV of the Asian lineage. Methodology/Principal Findings Using mice deficient in interferon α/β and Ɣ receptors (AG129 mice), we report that these animals were highly susceptible to ZIKV infection and disease, succumbing within seven to eight days. Rapid viremic dissemination was observed in visceral organs and brain; but only was associated with severe pathologies in the brain and muscle. Finally, these results were consistent across challenge routes, age of mice, and inoculum doses. These data represent a mouse model for ZIKV that is not dependent on adapting ZIKV to intracerebral passage in mice. Conclusions/Significance Foot pad injection of AG129 mice with ZIKV represents a biologically relevant model for studying ZIKV infection and disease development following wild-type virus inoculation without the requirement for adaptation of the virus or intracerebral delivery of the virus. This newly developed Zika disease model can be exploited to identify determinants of ZIKV virulence and reveal molecular mechanisms that control the virus-host interaction, providing a framework for rational design of acute phase therapeutics and for vaccine efficacy testing.
Scientific Reports | 2016
Matthew T. Aliota; Stephen A. Peinado; Iván Darío Vélez; Jorge E. Osorio
Zika virus (ZIKV) is causing an explosive outbreak of febrile disease in the Americas. There are no effective antiviral therapies or licensed vaccines for this virus, and mosquito control strategies have not been adequate to contain the virus. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against other arboviruses. At present, it is unknown whether or not ZIKV can infect, disseminate, and be transmitted by Wolbachia-infected Ae. aegypti. Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for ZIKV. These results support the use of Wolbachia biocontrol as a multivalent strategy against Ae. aegypti-transmitted viruses.
PLOS Pathogens | 2017
Sydney Nguyen; Kathleen M. Antony; Dawn M. Dudley; Sarah Kohn; Heather A. Simmons; Bryce Wolfe; M. Shahriar Salamat; Leandro B. C. Teixeira; Gregory J. Wiepz; Troy H. Thoong; Matthew T. Aliota; Andrea M. Weiler; Gabrielle L. Barry; Kim L. Weisgrau; Logan J. Vosler; Mariel S. Mohns; Meghan E. Breitbach; Laurel M. Stewart; Mustafa N. Rasheed; Christina M. Newman; Michael E. Graham; Oliver Wieben; Patrick A. Turski; Kevin M. Johnson; Jennifer Post; Jennifer M. Hayes; Nancy Schultz-Darken; Michele L. Schotzko; Josh Eudailey; Sallie R. Permar
Infection with Zika virus (ZIKV) is associated with human congenital fetal anomalies. To model fetal outcomes in nonhuman primates, we administered Asian-lineage ZIKV subcutaneously to four pregnant rhesus macaques. While non-pregnant animals in a previous study contemporary with the current report clear viremia within 10–12 days, maternal viremia was prolonged in 3 of 4 pregnancies. Fetal head growth velocity in the last month of gestation determined by ultrasound assessment of head circumference was decreased in comparison with biparietal diameter and femur length within each fetus, both within normal range. ZIKV RNA was detected in tissues from all four fetuses at term cesarean section. In all pregnancies, neutrophilic infiltration was present at the maternal-fetal interface (decidua, placenta, fetal membranes), in various fetal tissues, and in fetal retina, choroid, and optic nerve (first trimester infection only). Consistent vertical transmission in this primate model may provide a platform to assess risk factors and test therapeutic interventions for interruption of fetal infection. The results may also suggest that maternal-fetal ZIKV transmission in human pregnancy may be more frequent than currently appreciated.
PLOS Neglected Tropical Diseases | 2016
Matthew T. Aliota; Dawn M. Dudley; Christina M. Newman; Emma L. Mohr; Dane D. Gellerup; Meghan E. Breitbach; Connor R. Buechler; Mustafa N. Rasheed; Mariel S. Mohns; Andrea M. Weiler; Gabrielle L. Barry; Kim L. Weisgrau; Josh Eudailey; Eva G. Rakasz; Logan J. Vosler; Jennifer Post; Saverio Capuano; Thaddeus G. Golos; Sallie R. Permar; Jorge E. Osorio; Thomas C. Friedrich; Shelby L. O’Connor; David H. O’Connor
Background Zika virus (ZIKV; Flaviviridae, Flavivirus) was declared a public health emergency of international concern by the World Health Organization (WHO) in February 2016, because of the evidence linking infection with ZIKV to neurological complications, such as Guillain-Barre Syndrome in adults and congenital birth defects including microcephaly in the developing fetus. Because development of a ZIKV vaccine is a top research priority and because the genetic and antigenic variability of many RNA viruses limits the effectiveness of vaccines, assessing whether immunity elicited against one ZIKV strain is sufficient to confer broad protection against all ZIKV strains is critical. Recently, in vitro studies demonstrated that ZIKV likely circulates as a single serotype. Here, we demonstrate that immunity elicited by African lineage ZIKV protects rhesus macaques against subsequent infection with Asian lineage ZIKV. Methodology/Principal Findings Using our recently developed rhesus macaque model of ZIKV infection, we report that the prototypical ZIKV strain MR766 productively infects macaques, and that immunity elicited by MR766 protects macaques against heterologous Asian ZIKV. Furthermore, using next generation deep sequencing, we found in vivo restoration of a putative N-linked glycosylation site upon replication in macaques that is absent in numerous MR766 strains that are widely being used by the research community. This reversion highlights the importance of carefully examining the sequence composition of all viral stocks as well as understanding how passage history may alter a virus from its original form. Conclusions/Significance An effective ZIKV vaccine is needed to prevent infection-associated fetal abnormalities. Macaques whose immune responses were primed by infection with East African ZIKV were completely protected from detectable viremia when subsequently rechallenged with heterologous Asian ZIKV. Therefore, these data suggest that immunogen selection is unlikely to adversely affect the breadth of vaccine protection, i.e., any Asian ZIKV immunogen that protects against homologous challenge will likely confer protection against all other Asian ZIKV strains.
PLOS Neglected Tropical Diseases | 2016
Matthew T. Aliota; Emma C. Walker; Alexander Uribe Yepes; Iván Darío Vélez; Bruce M. Christensen; Jorge E. Osorio
Background New approaches to preventing chikungunya virus (CHIKV) are needed because current methods are limited to controlling mosquito populations, and they have not prevented the invasion of this virus into new locales, nor have they been sufficient to control the virus upon arrival. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against CHIKV. Although this approach holds much promise for limiting virus transmission, at present our understanding of the ability of CHIKV to infect, disseminate, and be transmitted by wMel-infected Ae. aegypti currently being used at Wolbachia release sites is limited. Methodology/Principal Findings Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for CHIKV, even with extremely high viral titers in the bloodmeal. In addition, we examined the dynamics of CHIKV infection over the course of four to seven days post feeding. Wolbachia-infected mosquitoes remained non-infective over the duration of seven days, i.e., no infectious virus was detected in the saliva when exposed to bloodmeals of moderate viremia, but CHIKV-exposed, wild type mosquitoes did have viral loads in the saliva consistent with what has been reported elsewhere. Finally, the presence of wMel infection had no impact on the lifespan of mosquitoes as compared to wild type mosquitoes following CHIKV infection. Conclusions/Significance These results could have an impact on vector control strategies in areas where Ae. aegypti are transmitting both DENV and CHIKV; i.e., they argue for further exploration, both in the laboratory and the field, on the feasibility of expanding this technology beyond DENV.
Emerging Infectious Diseases | 2016
Matthew T. Aliota; Stephen A. Peinado; Jorge E. Osorio; Lyric C. Bartholomay
To the Editor: Zika virus, genus Flavivirus, has spread nearly uncontrolled since its introduction into the Western Hemisphere; autochthonous spread has occurred in >39 countries and territories, including several US territories. Transmission of Zika virus is usually by the bite of infected mosquitoes, and potential for emergence in areas with competent mosquito vectors is high (1). Future spread of Zika virus is unpredictable; however, eventual local spread in the United States is possible. As of July 13, 2016, a total of 1,306 travel-associated cases had been reported (ArboNET, https://www.cdc.gov/zika); substantial populations of Aedes (Stegomyia) aegypti (Linnaeus) mosquitoes exist in >16 states in the eastern, southeastern, and southwestern United States; and Ae. (Stegomyia) albopictus (Skuse) mosquitoes inhabit >28 states and continued expansion throughout the northern United States is probable (2). Mosquitoes of these 2 species have demonstrated the ability to transmit Zika virus (1).
PLOS Neglected Tropical Diseases | 2009
Sara M. Erickson; Zhiyong Xi; George F. Mayhew; Jose L. Ramirez; Matthew T. Aliota; Bruce M. Christensen; George Dimopoulos
Human lymphatic filariasis is a mosquito-vectored disease caused by the nematode parasites Wuchereria bancrofti, Brugia malayi and Brugia timori. These are relatively large roundworms that can cause considerable damage in compatible mosquito vectors. In order to assess how mosquitoes respond to infection in compatible mosquito-filarial worm associations, microarray analysis was used to evaluate transcriptome changes in Aedes aegypti at various times during B. malayi development. Changes in transcript abundance in response to the different stages of B. malayi infection were diverse. At the early stages of midgut and thoracic muscle cell penetration, a greater number of genes were repressed compared to those that were induced (20 vs. 8). The non-feeding, intracellular first-stage larvae elicited few differences, with 4 transcripts showing an increased and 9 a decreased abundance relative to controls. Several cecropin transcripts increased in abundance after parasites molted to second-stage larvae. However, the greatest number of transcripts changed in abundance after larvae molted to third-stage larvae and migrated to the head and proboscis (120 induced, 38 repressed), including a large number of putative, immunity-related genes (∼13% of genes with predicted functions). To test whether the innate immune system of mosquitoes was capable of modulating permissiveness to the parasite, we activated the Toll and Imd pathway controlled rel family transcription factors Rel1 and Rel2 (by RNA interference knockdown of the pathways negative regulators Cactus and Caspar) during the early stages of infection with B. malayi. The activation of either of these immune signaling pathways, or knockdown of the Toll pathway, did not affect B. malayi in Ae. aegypti. The possibility of LF parasites evading mosquito immune responses during successful development is discussed.
Viruses | 2016
Rodrigo Delvecchio; Luiza M. Higa; Paula Pezzuto; Ana Luiza Chaves Valadão; Patricia P. Garcez; Fábio L. Monteiro; Erick Correia Loiola; André A. Dias; Fábio J. M. Silva; Matthew T. Aliota; Elizabeth A. Caine; Jorge E. Osorio; Maria Bellio; David H. O’Connor; Stevens Rehen; Renato Santana de Aguiar; Andrea Savarino; Loraine Campanati; Amilcar Tanuri
Zika virus (ZIKV) infection in utero might lead to microcephaly and other congenital defects. Since no specific therapy is available thus far, there is an urgent need for the discovery of agents capable of inhibiting its viral replication and deleterious effects. Chloroquine is widely used as an antimalarial drug, anti-inflammatory agent, and it also shows antiviral activity against several viruses. Here we show that chloroquine exhibits antiviral activity against ZIKV in Vero cells, human brain microvascular endothelial cells, human neural stem cells, and mouse neurospheres. We demonstrate that chloroquine reduces the number of ZIKV-infected cells in vitro, and inhibits virus production and cell death promoted by ZIKV infection without cytotoxic effects. In addition, chloroquine treatment partially reveres morphological changes induced by ZIKV infection in mouse neurospheres.
Antiviral Research | 2017
Matthew T. Aliota; Leda Bassit; Shelton S. Bradrick; Bryan D. Cox; Mariano A. Garcia-Blanco; Christina Gavegnano; Thomas C. Friedrich; Thaddeus G. Golos; Diane E. Griffin; Andrew D. Haddow; Esper G. Kallas; Uriel Kitron; Marc Lecuit; Diogo M. Magnani; Caroline Marrs; Natalia Mercer; Edward McSweegan; Lisa F. P. Ng; David H. O'Connor; Jorge E. Osorio; Guilherme S. Ribeiro; Michael J. Ricciardi; Shannan L. Rossi; George R. Saade; Raymond F. Schinazi; Geraldine Schott-Lerner; Chao Shan; Pei Yong Shi; David I. Watkins; Nikos Vasilakis
In response to the outbreak of Zika virus (ZIKV) infection in the Western Hemisphere and the recognition of a causal association with fetal malformations, the Global Virus Network (GVN) assembled an international taskforce of virologists to promote basic research, recommend public health measures and encourage the rapid development of vaccines, antiviral therapies and new diagnostic tests. In this article, taskforce members and other experts review what has been learned about ZIKV-induced disease in humans, its modes of transmission and the cause and nature of associated congenital manifestations. After describing the make-up of the taskforce, we summarize the emergence of ZIKV in the Americas, Africa and Asia, its spread by mosquitoes, and current control measures. We then review the spectrum of primary ZIKV-induced disease in adults and children, sites of persistent infection and sexual transmission, then examine what has been learned about maternal-fetal transmission and the congenital Zika syndrome, including knowledge obtained from studies in laboratory animals. Subsequent sections focus on vaccine development, antiviral therapeutics and new diagnostic tests. After reviewing current understanding of the mechanisms of emergence of Zika virus, we consider the likely future of the pandemic.