Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew V. Sheridan is active.

Publication


Featured researches published by Matthew V. Sheridan.


Journal of Materials Chemistry | 2016

An aqueous, organic dye derivatized SnO2/TiO2 core/shell photoanode

Kyung Ryang Wee; Benjamin D. Sherman; M. Kyle Brennaman; Matthew V. Sheridan; Animesh Nayak; Leila Alibabaei; Thomas J. Meyer

Visible light driven water splitting in a dye-sensitized photoelectrochemical cell (DSPEC) based on a phosphonic acid-derivatized donor–π–acceptor (D–π–A) organic dye (P–A–π–D) is described with the dye anchored to an FTO|SnO2/TiO2 core/shell photoanode in a pH 7 phosphate buffer solution. Transient absorption measurements on FTO|TiO2|–[P–A–π–D] compared to core/shell, FTO|SnO2/TiO2(3 nm)|–[P–A–π–D], reveal that excitation of the dye is rapid and efficient with a decrease in back electron rate by a factor of ∼10 on the core/shell. Upon visible, 1 sun excitation (100 mW cm−2) of FTO|SnO2/TiO2(3 nm)|–[P–A–π–D] in a phosphate buffer at pH 7 with 20 mM added hydroquinone (H2Q), photocurrents of ∼2.5 mA cm−2 are observed which are sustained over >15 min photolysis periods with a current enhancement of ∼30-fold compared to FTO|TiO2|–[P–A–π–D] due to the core/shell effect. On surfaces co-loaded with both –[P–A–π–D] and the known water oxidation catalyst, Ru(bda)(pyP)2 (pyP = pyridin-4-methyl phosphonic acid), maximum photocurrent levels of 1.4 mA cm−2 were observed which decreased over an 10 min interval to 0.1 mA cm−2. O2 was measured by use of a two-electrode, collector–generator sandwich cell and was produced in low faradaic efficiencies with the majority of the oxidative photocurrent due to oxidative decomposition of the dye.


Journal of the American Chemical Society | 2013

An Anodic Method for Covalent Attachment of Molecules to Electrodes through an Ethynyl Linkage

Matthew V. Sheridan; Kevin Lam

Electroactive organometallic molecules have been covalently attached to electrode surfaces through an ethynyl linkage. The process takes advantage of ethynyl-based radicals generated by anodic oxidation of a lithio-activated terminal ethynyl group. Electrophores containing redox-active ferrocene, cymantrene, or cobaltocenium moieties have been deposited at the one-to-three monolayer level. Both metal-based and ligand-based chemical reactions have been carried out on the surface-modified systems.


Journal of the American Chemical Society | 2016

A Dye-Sensitized Photoelectrochemical Tandem Cell for Light Driven Hydrogen Production from Water

Benjamin D. Sherman; Matthew V. Sheridan; Kyung Ryang Wee; Seth L. Marquard; Degao Wang; Leila Alibabaei; Dennis L. Ashford; Thomas J. Meyer

Tandem junction photoelectrochemical water-splitting devices, whereby two light absorbing electrodes targeting separate portions of the solar spectrum generate the voltage required to convert water to oxygen and hydrogen, enable much higher possible efficiencies than single absorber systems. We report here on the development of a tandem system consisting of a dye-sensitized photoelectrochemical cell (DSPEC) wired in series with a dye-sensitized solar cell (DSC). The DSPEC photoanode incorporates a tris(bipyridine)ruthenium(II)-type chromophore and molecular ruthenium based water oxidation catalyst. The DSPEC was tested with two more-red absorbing DSC variations, one utilizing N719 dye with an I3-/I- redox mediator solution and the other D35 dye with a tris(bipyridine)cobalt ([Co(bpy)3]3+/2+) based mediator. The tandem configuration consisting of the DSPEC and D35/[Co(bpy)3]3+/2+ based DSC gave the best overall performance and demonstrated the production of H2 from H2O with the only energy input from simulated solar illumination.


Angewandte Chemie | 2013

Covalent attachment of porphyrins and ferrocenes to electrode surfaces through direct anodic oxidation of terminal ethynyl groups.

Matthew V. Sheridan; Kevin Lam

One with the surface: A method is presented for electrode modification with terminal alkynes and alkenes. Direct oxidation of these moieties leads to efficient grafting onto glassy carbon, gold, platinum, and indium tin oxide surfaces. Various ferrocenes and 5,10,15,20-(4-ethynylphenyl)porphyrin were attached in this way.


Analytical Chemistry | 2016

Two Electrode Collector–Generator Method for the Detection of Electrochemically or Photoelectrochemically Produced O2

Benjamin D. Sherman; Matthew V. Sheridan; Christopher J. Dares; Thomas J. Meyer

A dual working electrode technique for the in situ production and quantification of electrochemically or photoelectrochemically produced O2 is described. This technique, termed a collector-generator cell, utilizes a transparent fluorine doped tin oxide electrode to sense O2. This setup is specifically designed for detecting O2 in dye sensitized photoelectrosynthesis cells.


ACS Applied Materials & Interfaces | 2017

Inner Layer Control of Performance in a Dye-Sensitized Photoelectrosynthesis Cell

Degao Wang; Byron H. Farnum; Matthew V. Sheridan; Seth L. Marquard; Benjamin D. Sherman; Thomas J. Meyer

Interfacial charge transfer and core-shell structures play important roles in dye-sensitized photoelectrosynthesis cells (DSPEC) for water splitting into H2 and O2. An important element in the design of the photoanode in these devices is a core/shell structure which controls local electron transfer dynamics. Here, we introduce a new element, an internal layer of Al2O3 lying between the Sb:SnO2/TiO2 layers in a core/shell electrode which can improve photocurrents by up to 300%. In these structures, the results of photocurrent, transient absorption, and linear scan voltammetry measurements point to an important role for the Al2O3 layer in controlling internal electron transfer within the core/shell structure.


Journal of the American Chemical Society | 2017

Layer-by-Layer Molecular Assemblies for Dye-Sensitized Photoelectrosynthesis Cells Prepared by Atomic Layer Deposition

Degao Wang; Matthew V. Sheridan; Bing Shan; Byron H. Farnum; Seth L. Marquard; Benjamin D. Sherman; Michael S. Eberhart; Animesh Nayak; Christopher J. Dares; Atanu K. Das; R. Morris Bullock; Thomas J. Meyer

In a dye sensitized photoelectrosynthesis cell (DSPEC), the relative orientation of the catalyst and chromophore plays an important role in determining the device efficiency. Here we introduce a new, robust atomic layer deposition (ALD) procedure for the preparation of molecular chromophore-catalyst assemblies on wide bandgap semiconductors. In this procedure, solution deposited, phosphonate derivatized metal complexes on metal oxide surfaces are treated with reactive metal reagents in the gas phase by ALD to form an outer metal ion bridging group, which can bind a second phosphonate containing species from solution to establish a R1-PO2-O-M-O-PO2-R2 type surface assembly. With the ALD procedure, assemblies bridged by Al(III), Sn(IV), Ti(IV), or Zr(IV) metal oxide units have been prepared. To evaluate the performance of this new type of surface assembly, intra-assembly electron transfer was investigated by transient absorption spectroscopy, and light-driven water splitting experiments under steady-state illumination were conducted. A SnO2 bridged assembly on SnO2/TiO2 core/shell electrodes undergoes light-driven water oxidation with an incident photon to current efficiency (IPCE) of 17.1% at 440 nm. Light-driven water reduction with a ruthenium trisbipyridine chromophore and molecular Ni(II) catalyst on NiO films was also used to produce H2. Compared to conventional solution-based procedures, the ALD approach offers significant advantages in scope and flexibility for the preparation of stable surface structures.


Proceedings of the National Academy of Sciences of the United States of America | 2018

CO2 reduction to acetate in mixtures of ultrasmall (Cu)n,(Ag)m bimetallic nanoparticles

Ying Wang; Degao Wang; Christopher J. Dares; Seth L. Marquard; Matthew V. Sheridan; Thomas J. Meyer

Significance Efficient reduction of carbon dioxide to useful fuels and chemicals is an important research goal in artificial photosynthesis. Significant progress has been made for the C1 products, CO and HCOO−. We report here a procedure based on the use of ultrasmall, monodispersed Cu and Ag bimetallic nanoparticles on thin, electrochemically polymerized poly-Fe(vbpy)3(PF6)2 films. They reduce CO2 to acetate at pH 7 in aqueous HCO3− solutions at relatively high efficiencies with significant rate enhancements with added benzotriazole. In the sequence of clusters, the most efficient results for acetate production were obtained in films of (Cu)2,(Ag)3 with a faradaic efficiency of 21.2% for acetate from CO2 at −1.33 V vs. reversible hydrogen electrode in 0.5 M KHCO3 with 8 ppm of added benzotriazole at 0 °C. Monodispersed mixtures of 6-nm Cu and Ag nanoparticles were prepared by electrochemical reduction on electrochemically polymerized poly-Fe(vbpy)3(PF6)2 film electrodes on glassy carbon. Conversion of the complex to poly-Fe(vbpy)2(CN)2 followed by surface binding of salts of the cations and electrochemical reduction gave a mixture of chemically distinct clusters on the surface, (Cu)m,(Ag)n|polymer|glassy carbon electrode (GCE), as shown by X-ray photoelectron spectroscopy (XPS) measurements. A (Cu)2,(Ag)3|(80-monolayer-poly-Fe(vbpy)32+|GCE electrode at −1.33 V vs. reversible hydrogen electrode (RHE) in 0.5 M KHCO3, with 8 ppm added benzotriazole (BTA) at 0 °C, gave acetate with a faradaic efficiency of 21.2%.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Plasmon-enhanced light-driven water oxidation by a dye-sensitized photoanode

Degao Wang; Benjamin D. Sherman; Byron H. Farnum; Matthew V. Sheridan; Seth L. Marquard; Michael S. Eberhart; Christopher J. Dares; Thomas J. Meyer

Significance Dye-sensitized photoelectrosynthesis cells (DSPECs) provide a basis for artificial photosynthesis and solar fuels production. By combining molecular chromophores and catalysts with high surface area, transparent semiconductor electrodes, a DSPEC provides the basis for light-driven conversion of water to O2 and H2 or for reduction of CO2 to carbon-based fuels. The incorporation of plasmonic cubic silver nanoparticles, with a strongly localized surface plasmon absorbance near 450 nm, to a DSPEC photoanode induces a great increase in the efficiency of water oxidation to O2 at a DSPEC photoanode. The improvement in performance by the molecular components in the photoanode highlights a remarkable advantage for the plasmonic effect in driving the 4e-/4H+ oxidation of water to O2 in the photoanode. Dye-sensitized photoelectrosynthesis cells (DSPECs) provide a flexible approach for solar water splitting based on the integration of molecular light absorption and catalysis on oxide electrodes. Recent advances in this area, including the use of core/shell oxide interfacial structures and surface stabilization by atomic layer deposition, have led to improved charge-separation lifetimes and the ability to obtain substantially improved photocurrent densities. Here, we investigate the introduction of Ag nanoparticles into the core/shell structure and report that they greatly enhance light-driven water oxidation at a DSPEC photoanode. Under 1-sun illumination, Ag nanoparticle electrodes achieved high photocurrent densities, surpassing 2 mA cm−2 with an incident photon-to-current efficiency of 31.8% under 450-nm illumination.


Langmuir | 2016

Anodic Methods for Covalent Attachment of Ethynylferrocenes to Electrode Surfaces: Comparison of Ethynyl Activation Processes

Matthew V. Sheridan; Kevin Lam; Mona Sharafi; Severin T. Schneebeli

The electrochemical oxidation of ferrocenes having an H- or Li-terminated ethynyl group has been studied, especially as it relates to their covalent anchoring to carbon surfaces. The anodic oxidation of lithioethynylferrocene (1-Li) results in rapid loss of Li(+) and formation of the ethynyl-based radical FeCp(η(5)-C5H4)(C≡C), (1, Cp = η(5)-C5H5), which reacts with the electrode. Chemically modified electrodes (CMEs) were thereby produced containing strongly bonded, ethynyl-linked monolayers and electrochemically controlled multilayers. Strong attachments of ethynylferrocenes to gold and platinum surfaces were also possible. The lithiation/anodic oxidation process is a mirror analogue of the diazonium/cathodic reduction process for preparation of aryl-modified CMEs. A second method produced an ethynylferrocene-modified electrode by direct anodic oxidation of the H-terminated ethynylferrocene (1-H) at a considerably more positive potential. Both processes produced robust modified electrodes with well-defined ferrocene-based surface cyclic voltammetry waves that remained unchanged for as many as 10(4) scans. Ferrocene derivatives in which the ethynyl moiety was separated from the cyclopentadienyl ring by an ether group showed very similar behavior. DFT calculations were performed on the relevant redox states of 1-H, 1-Li, and 1, with emphasis on the ferrocenyl vs ethynyl character of their high valence orbitals. Whereas the HOMOs of both 1-H and 1-Li have some ethynyl character, the SOMOs of the corresponding monocations are strictly ferrocenium in makeup. Predominant ethynyl character returns to the highest valence orbitals after loss of Li(+) from [1-Li](+) or loss of H(+) from [1-H](2+). These anodic processes hold promise for the controlled chemical modification of carbon and other electrode surfaces by a variety of ethynyl or alkynyl-linked organic and metal-containing systems.

Collaboration


Dive into the Matthew V. Sheridan's collaboration.

Top Co-Authors

Avatar

Thomas J. Meyer

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Benjamin D. Sherman

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Degao Wang

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Seth L. Marquard

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Christopher J. Dares

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Kyung Ryang Wee

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Animesh Nayak

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Dennis L. Ashford

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Leila Alibabaei

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Byron H. Farnum

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge