Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew Warkentin is active.

Publication


Featured researches published by Matthew Warkentin.


Journal of Applied Crystallography | 2006

Hyperquenching for protein cryocrystallography

Matthew Warkentin; Viatcheslav Berejnov; Naji S. Husseini; Robert E. Thorne

When samples having volumes characteristic of protein crystals are plunge cooled in liquid nitrogen or propane, most cooling occurs in the cold gas layer above the liquid. By removing this cold gas layer, cooling rates for small samples and modest plunge velocities are increased to 1.5 × 10(4) K s(-1), with increases of a factor of 100 over current best practice possible with 10 μm samples. Glycerol concentrations required to eliminate water crystallization in protein-free aqueous mixtures drop from ∼28% w/v to as low as 6% w/v. These results will allow many crystals to go from crystallization tray to liquid cryogen to X-ray beam without cryoprotectants. By reducing or eliminating the need for cryoprotectants in growth solutions, they may also simplify the search for crystallization conditions and for optimal screens. The results presented here resolve many puzzles, such as why plunge cooling in liquid nitrogen or propane has, until now, not yielded significantly better diffraction quality than gas-stream cooling.


Journal of Synchrotron Radiation | 2013

Global radiation damage: temperature dependence, time dependence and how to outrun it

Matthew Warkentin; Jesse B. Hopkins; Ryan Badeau; Anne Mulichak; Lisa J. Keefe; Robert E. Thorne

A series of studies that provide a consistent and illuminating picture of global radiation damage to protein crystals, especially at temperatures above ∼200 K, are described. The radiation sensitivity shows a transition near 200 K, above which it appears to be limited by solvent-coupled diffusive processes. Consistent with this interpretation, a component of global damage proceeds on timescales of several minutes at 180 K, decreasing to seconds near room temperature. As a result, data collection times of order 1 s allow up to half of global damage to be outrun at 260 K. Much larger damage reductions near room temperature should be feasible using larger dose rates delivered using microfocused beams, enabling a significant expansion of structural studies of proteins under more nearly native conditions.


eLife | 2015

Mapping the conformational landscape of a dynamic enzyme by multitemperature and XFEL crystallography

D.A. Keedy; Lillian R. Kenner; Matthew Warkentin; Rahel A. Woldeyes; Jesse B. Hopkins; Michael C. Thompson; Aaron S. Brewster; Andrew H. Van Benschoten; Elizabeth L. Baxter; Monarin Uervirojnangkoorn; Scott E. McPhillips; Jinhu Song; Roberto Alonso-Mori; James M. Holton; William I. Weis; Axel T. Brunger; S. Michael Soltis; Henrik T. Lemke; Ana Gonzalez; Nicholas K. Sauter; Aina E. Cohen; Henry van den Bedem; Robert E. Thorne; J.S. Fraser

Determining the interconverting conformations of dynamic proteins in atomic detail is a major challenge for structural biology. Conformational heterogeneity in the active site of the dynamic enzyme cyclophilin A (CypA) has been previously linked to its catalytic function, but the extent to which the different conformations of these residues are correlated is unclear. Here we compare the conformational ensembles of CypA by multitemperature synchrotron crystallography and fixed-target X-ray free-electron laser (XFEL) crystallography. The diffraction-before-destruction nature of XFEL experiments provides a radiation-damage-free view of the functionally important alternative conformations of CypA, confirming earlier synchrotron-based results. We monitored the temperature dependences of these alternative conformations with eight synchrotron datasets spanning 100-310 K. Multiconformer models show that many alternative conformations in CypA are populated only at 240 K and above, yet others remain populated or become populated at 180 K and below. These results point to a complex evolution of conformational heterogeneity between 180-–240 K that involves both thermal deactivation and solvent-driven arrest of protein motions in the crystal. The lack of a single shared conformational response to temperature within the dynamic active-site network provides evidence for a conformation shuffling model, in which exchange between rotamer states of a large aromatic ring in the middle of the network shifts the conformational ensemble for the other residues in the network. Together, our multitemperature analyses and XFEL data motivate a new generation of temperature- and time-resolved experiments to structurally characterize the dynamic underpinnings of protein function. DOI: http://dx.doi.org/10.7554/eLife.07574.001


Acta Crystallographica Section D-biological Crystallography | 2011

Can radiation damage to protein crystals be reduced using small-molecule compounds?

Jan Kmetko; Matthew Warkentin; Ulrich Englich; Robert E. Thorne

Recent studies have defined a data-collection protocol and a metric that provide a robust measure of global radiation damage to protein crystals. Using this protocol and metric, 19 small-molecule compounds (introduced either by cocrystallization or soaking) were evaluated for their ability to protect lysozyme crystals from radiation damage. The compounds were selected based upon their ability to interact with radiolytic products (e.g. hydrated electrons, hydrogen, hydroxyl and perhydroxyl radicals) and/or their efficacy in protecting biological molecules from radiation damage in dilute aqueous solutions. At room temperature, 12 compounds had no effect and six had a sensitizing effect on global damage. Only one compound, sodium nitrate, appeared to extend crystal lifetimes, but not in all proteins and only by a factor of two or less. No compound provided protection at T=100 K. Scavengers are ineffective in protecting protein crystals from global damage because a large fraction of primary X-ray-induced excitations are generated in and/or directly attack the protein and because the ratio of scavenger molecules to protein molecules is too small to provide appreciable competitive protection. The same reactivity that makes some scavengers effective radioprotectors in protein solutions may explain their sensitizing effect in the protein-dense environment of a crystal. A more productive focus for future efforts may be to identify and eliminate sensitizing compounds from crystallization solutions.


Acta Crystallographica Section D-biological Crystallography | 2010

Glass transition in thaumatin crystals revealed through temperature-dependent radiation-sensitivity measurements.

Matthew Warkentin; Robert E. Thorne

The temperature-dependence of radiation damage to thaumatin crystals between T = 300 and 100 K is reported. The amount of damage for a given dose decreases sharply as the temperature decreases from 300 to 220 K and then decreases more gradually on further cooling below the protein-solvent glass transition. Two regimes of temperature-activated behavior were observed. At temperatures above ∼200 K the activation energy of 18.0 kJ mol(-1) indicates that radiation damage is dominated by diffusive motions in the protein and solvent. At temperatures below ∼200 K the activation energy is only 1.00 kJ mol(-1), which is of the order of the thermal energy. Similar activation energies describe the temperature-dependence of radiation damage to a variety of solvent-free small-molecule organic crystals over the temperature range T = 300-80 K. It is suggested that radiation damage in this regime is vibrationally assisted and that the freezing-out of amino-acid scale vibrations contributes to the very weak temperature-dependence of radiation damage below ∼80 K. Analysis using the radiation-damage model of Blake and Phillips [Blake & Phillips (1962), Biological Effects of Ionizing Radiation at the Molecular Level, pp. 183-191] indicates that large-scale conformational and molecular motions are frozen out below T = 200 K but become increasingly prevalent and make an increasing contribution to damage at higher temperatures. Possible alternative mechanisms for radiation damage involving the formation of hydrogen-gas bubbles are discussed and discounted. These results have implications for mechanistic studies of proteins and for studies of the protein glass transition. They also suggest that data collection at T ≃ 220 K may provide a viable alternative for structure determination when cooling-induced disorder at T = 100 is excessive.


Journal of Applied Crystallography | 2009

Slow cooling of protein crystals.

Matthew Warkentin; Robert E. Thorne

Cryoprotectant-free thaumatin crystals have been cooled from 300 to 100 K at a rate of 0.1 K s(-1) - 10(3)-10(4) times slower than in conventional flash cooling - while continuously collecting X-ray diffraction data, so as to follow the evolution of protein lattice and solvent properties during cooling. Diffraction patterns show no evidence of crystalline ice at any temperature. This indicates that the lattice of protein molecules is itself an excellent cryoprotectant, and with sodium potassium tartrate incorporated from the 1.5 M mother liquor ice nucleation rates are at least as low as in a 70% glycerol solution. Crystal quality during slow cooling remains high, with an average mosaicity at 100 K of 0.2 degrees . Most of the mosaicity increase occurs above approximately 200 K, where the solvent is still liquid, and is concurrent with an anisotropic contraction of the unit cell. Near 180 K a crossover to solid-like solvent behavior occurs, and on further cooling there is no additional degradation of crystal order. The variation of B factor with temperature shows clear evidence of a protein dynamical transition near 210 K, and at lower temperatures the slope dB/dT is a factor of 3-6 smaller than has been reported for any other protein. These results establish the feasibility of fully temperature controlled studies of protein structure and dynamics between 300 and 100 K.


Journal of Applied Crystallography | 2008

Cryocrystallography in capillaries: critical glycerol concentrations and cooling rates

Matthew Warkentin; Valentina Stanislavskaia; Katherine Hammes; Robert E. Thorne

Capillary tubes have many advantages over multi-well plates for macromol-ecular crystal growth and handling, including the possibility of in situ structure determination. To obtain complete high-resolution X-ray data sets, cryopreservation protocols must be developed to prevent crystalline ice formation and preserve macromolecular crystal order. The minimum glycerol concentrations required to vitrify aqueous solutions during plunging into liquid nitrogen and liquid propane have been determined for capillary diameters from 3.3 mm to 150 microm. For the smallest diameter, the required glycerol concentrations are 30%(w/v) in nitrogen and 20%(w/v) in propane, corresponding to cooling rates of approximately 800 and approximately 7000 K s(-1), respectively. These concentrations are much larger than are required in current best practice using crystals in loops or on microfabricated mounts. In additon, the relation between the minimum cooling rate for vitrification and glycerol concentration has been estimated; this relation is of fundamental importance in developing rational cryopreservation protocols.


Acta Crystallographica Section D-biological Crystallography | 2012

Global radiation damage at 300 and 260 K with dose rates approaching 1 MGy s−1

Matthew Warkentin; Ryan Badeau; Jesse B. Hopkins; Anne Mulichak; Lisa J. Keefe; Robert E. Thorne

Global radiation damage to 19 thaumatin crystals has been measured using dose rates from 3 to 680 kGy s⁻¹. At room temperature damage per unit dose appears to be roughly independent of dose rate, suggesting that the timescales for important damage processes are less than ∼1 s. However, at T = 260 K approximately half of the global damage manifested at dose rates of ∼10 kGy s⁻¹ can be outrun by collecting data at 680 kGy s⁻¹. Appreciable sample-to-sample variability in global radiation sensitivity at fixed dose rate is observed. This variability cannot be accounted for by errors in dose calculation, crystal slippage or the size of the data sets in the assay.


Acta Crystallographica Section D-biological Crystallography | 2011

Development of high-performance X-ray transparent crystallization plates for in situ protein crystal screening and analysis

Ahmed Soliman; Matthew Warkentin; Benjamin Apker; Robert E. Thorne

X-ray transparent crystallization plates based upon a novel drop-pinning technology provide a flexible, simple and inexpensive approach to protein crystallization and screening. The plates consist of open cells sealed top and bottom by thin optically, UV and X-ray transparent films. The plates do not need wells or depressions to contain liquids. Instead, protein drops and reservoir solution are held in place by rings with micrometre dimensions that are patterned onto the bottom film. These rings strongly pin the liquid contact lines, thereby improving drop shape and position uniformity, and thus crystallization reproducibility, and simplifying automated image analysis of drop contents. The same rings effectively pin solutions containing salts, proteins, cryoprotectants, oils, alcohols and detergents. Strong pinning by rings allows the plates to be rotated without liquid mixing to 90° for X-ray data collection or to be inverted for hanging-drop crystallization. The plates have the standard SBS format and are compatible with standard liquid-handling robots.


Cryobiology | 2012

Effect of common cryoprotectants on critical warming rates and ice formation in aqueous solutions

Jesse B. Hopkins; Ryan Badeau; Matthew Warkentin; Robert E. Thorne

Ice formation on warming is of comparable or greater importance to ice formation on cooling in determining survival of cryopreserved samples. Critical warming rates required for ice-free warming of vitrified aqueous solutions of glycerol, dimethyl sulfoxide, ethylene glycol, polyethylene glycol 200 and sucrose have been measured for warming rates of order 10-10⁴ K/s. Critical warming rates are typically one to three orders of magnitude larger than critical cooling rates. Warming rates vary strongly with cooling rates, perhaps due to the presence of small ice fractions in nominally vitrified samples. Critical warming and cooling rate data spanning orders of magnitude in rates provide rigorous tests of ice nucleation and growth models and their assumed input parameters. Current models with current best estimates for input parameters provide a reasonable account of critical warming rates for glycerol solutions at high concentrations/low rates, but overestimate both critical warming and cooling rates by orders of magnitude at lower concentrations and larger rates. In vitrification protocols, minimizing concentrations of potentially damaging cryoprotectants while minimizing ice formation will require ultrafast warming rates, as well as fast cooling rates to minimize the required warming rates.

Collaboration


Dive into the Matthew Warkentin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D.A. Keedy

University of California

View shared research outputs
Top Co-Authors

Avatar

J.S. Fraser

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron S. Brewster

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge