Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthias Baumann is active.

Publication


Featured researches published by Matthias Baumann.


Science Translational Medicine | 2010

Frequent and Focal FGFR1 Amplification Associates with Therapeutically Tractable FGFR1 Dependency in Squamous Cell Lung Cancer

Jonathan M. Weiss; Martin L. Sos; Danila Seidel; Martin Peifer; Thomas Zander; Johannes M. Heuckmann; Roland T. Ullrich; Roopika Menon; Sebastian Maier; Alex Soltermann; Holger Moch; Patrick Wagener; Florian Fischer; Stefanie Heynck; Mirjam Koker; Jakob Schöttle; Frauke Leenders; Franziska Gabler; Ines Dabow; Silvia Querings; Lukas C. Heukamp; Hyatt Balke-Want; Sascha Ansén; Daniel Rauh; Ingelore Baessmann; Janine Altmüller; Zoe Wainer; Matthew Conron; Gavin Wright; Prudence A. Russell

FGFR1 amplification provides a therapeutic target for squamous cell lung cancer, which is resistant to other targeted lung cancer drugs. A Smoking Gun for Lung Cancer Detectives and scientists alike need strong evidence to take their cases to the judge, who for scientists is often a patient with a deadly disease. Yet, new culprits are sometimes found that can break a case wide open. Lung cancer, which accounts for more than 10% of the global cancer burden, has a poor prognosis and inadequately responds to chemotherapy and radiotherapy. New targeted treatments for lung adenocarcinomas inhibit the oncogenic versions of signaling protein kinases that arise from mutations typically found in lung cancer patients who have never smoked. However, smokers frequently suffer from a different deviant, squamous cell lung cancers, for which there are no known molecular genetic targets for therapy. Now, Weiss et al. have fingered a new suspect in smoking-related lung cancer: amplification of the FGFR1 gene, which encodes the fibroblast growth factor receptor 1 tyrosine kinase (FGFR1). To identify therapeutically viable genetic alterations that may influence squamous cell lung cancer, Weiss et al. performed genomic profiles on a large set of lung cancer specimens. Squamous cell lung cancer samples showed FGFR1 amplification, which was not found in other lung cancer subtypes. The authors then determined that a molecule that broadly inhibits FGF receptor function could block tumor growth and cause cell death in the cancers that expressed high amounts of the FGFR1 gene product in a manner that was dependent on FGFR1 expression. Moreover, FGFR1 inhibition resulted in a considerable decrease in tumor size in a mouse model of FGFR1-amplified lung cancer. This culmination of evidence implies that inhibition of this receptor tyrosine kinase should be explored as a candidate therapy for corralling squamous cell lung cancer in smokers. Lung cancer remains one of the leading causes of cancer-related death in developed countries. Although lung adenocarcinomas with EGFR mutations or EML4-ALK fusions respond to treatment by epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) inhibition, respectively, squamous cell lung cancer currently lacks therapeutically exploitable genetic alterations. We conducted a systematic search in a set of 232 lung cancer specimens for genetic alterations that were therapeutically amenable and then performed high-resolution gene copy number analyses. We identified frequent and focal fibroblast growth factor receptor 1 (FGFR1) amplification in squamous cell lung cancer (n = 155), but not in other lung cancer subtypes, and, by fluorescence in situ hybridization, confirmed the presence of FGFR1 amplifications in an independent cohort of squamous cell lung cancer samples (22% of cases). Using cell-based screening with the FGFR inhibitor PD173074 in a large (n = 83) panel of lung cancer cell lines, we demonstrated that this compound inhibited growth and induced apoptosis specifically in those lung cancer cells carrying amplified FGFR1. We validated the FGFR1 dependence of FGFR1-amplified cell lines by FGFR1 knockdown and by ectopic expression of an FGFR1-resistant allele (FGFR1V561M), which rescued FGFR1-amplified cells from PD173074-mediated cytotoxicity. Finally, we showed that inhibition of FGFR1 with a small molecule led to significant tumor shrinkage in vivo. Thus, focal FGFR1 amplification is common in squamous cell lung cancer and associated with tumor growth and survival, suggesting that FGFR inhibitors may be a viable therapeutic option in this cohort of patients.


Nature Communications | 2016

Identification of pyrazolopyridazinones as PDEδ inhibitors

Björn Papke; Sandip Murarka; Holger A Vogel; Pablo Martín-Gago; Marija Kovacevic; Dina C Truxius; Eyad K. Fansa; Shehab Ismail; Gunther Zimmermann; Kaatje Heinelt; Carsten Schultz-Fademrecht; Alaa Al Saabi; Matthias Baumann; Peter Nussbaumer; Alfred Wittinghofer; Herbert Waldmann; Philippe I. H. Bastiaens

The prenyl-binding protein PDEδ is crucial for the plasma membrane localization of prenylated Ras. Recently, we have reported that the small-molecule Deltarasin binds to the prenyl-binding pocket of PDEδ, and impairs Ras enrichment at the plasma membrane, thereby affecting the proliferation of KRas-dependent human pancreatic ductal adenocarcinoma cell lines. Here, using structure-based compound design, we have now identified pyrazolopyridazinones as a novel, unrelated chemotype that binds to the prenyl-binding pocket of PDEδ with high affinity, thereby displacing prenylated Ras proteins in cells. Our results show that the new PDEδ inhibitor, named Deltazinone 1, is highly selective, exhibits less unspecific cytotoxicity than the previously reported Deltarasin and demonstrates a high correlation with the phenotypic effect of PDEδ knockdown in a set of human pancreatic cancer cell lines.


Chemistry & Biology | 2017

Covalent Protein Labeling at Glutamic Acids

Pablo Martín-Gago; Eyad K. Fansa; Michael Winzker; Sandip Murarka; Petra Janning; Carsten Schultz-Fademrecht; Matthias Baumann; Alfred Wittinghofer; Herbert Waldmann

Covalent labeling of amino acids in proteins by reactive small molecules, in particular at cysteine SH and lysine NH groups, is a powerful approach to identify and characterize proteins and their functions. However, for the less-reactive carboxylic acids present in Asp and Glu, hardly any methodology is available. Employing the lipoprotein binding chaperone PDE6δ as an example, we demonstrate that incorporation of isoxazolium salts that resemble the structure and reactivity of Woodwards reagent K into protein ligands provides a novel method for selective covalent targeting of binding site carboxylic acids in whole proteomes. Covalent adduct formation occurs via rapid formation of enol esters and the covalent bond is stable even in the presence of strong nucleophiles. This new method promises to open up hitherto unexplored opportunities for chemical biology research.


Angewandte Chemie | 2017

A PDE6δ-KRas Inhibitor Chemotype with up to Seven H-Bonds and Picomolar Affinity that Prevents Efficient Inhibitor Release by Arl2

Pablo Martín-Gago; Eyad K. Fansa; Christian Klein; Sandip Murarka; Petra Janning; Marc Schürmann; Malte Metz; Shehab Ismail; Carsten Schultz-Fademrecht; Matthias Baumann; Philippe I. H. Bastiaens; Alfred Wittinghofer; Herbert Waldmann

Small-molecule inhibition of the interaction between the KRas oncoprotein and the chaperone PDE6δ impairs KRas spatial organization and signaling in cells. However, despite potent binding in vitro (KD <10 nm), interference with Ras signaling and growth inhibition require 5-20 μm compound concentrations. We demonstrate that these findings can be explained by fast release of high-affinity inhibitors from PDE6δ by the release factor Arl2. This limitation is overcome by novel highly selective inhibitors that bind to PDE6δ with up to 7 hydrogen bonds, resulting in picomolar affinity. Their release by Arl2 is greatly decreased, and representative compounds selectively inhibit growth of KRas mutated and -dependent cells with the highest activity recorded yet. Our findings indicate that very potent inhibitors of the KRas-PDE6δ interaction may impair the growth of tumors driven by oncogenic KRas.


Journal of Medicinal Chemistry | 2017

Indazole-Based Covalent Inhibitors To Target Drug-Resistant Epidermal Growth Factor Receptor

Stefano Tomassi; Jonas Lategahn; Julian Engel; Marina Keul; Hannah L. Tumbrink; Julia Ketzer; Thomas Mühlenberg; Matthias Baumann; Carsten Schultz-Fademrecht; Sebastian Bauer; Daniel Rauh

The specific targeting of oncogenic mutant epidermal growth factor receptor (EGFR) is a breakthrough in targeted cancer therapy and marks a drastic change in the treatment of non-small cell lung cancer (NSCLC). The recurrent emergence of resistance to these targeted drugs requires the development of novel chemical entities that efficiently inhibit drug-resistant EGFR. Herein, we report the optimization process for a hit compound that has emerged from a phenotypic screen resulting in indazole-based compounds. These inhibitors are conformationally less flexible, target gatekeeper mutated drug-resistant EGFR-L858R/T790M, and covalently alkylate Cys797. Western blot analysis, as well as characterization of the binding kinetics and kinase selectivity profiling, substantiates our approach of targeting drug-resistant EGFR-L858R/T790M with inhibitors incorporating the indazole as hinge binder.


Chemistry: A European Journal | 2017

Development of Pyridazinone Chemotypes Targeting the PDEδ Prenyl Binding Site

Sandip Murarka; Pablo Martín-Gago; Carsten Schultz-Fademrecht; Alaa Al Saabi; Matthias Baumann; Eyad K. Fansa; Shehab Ismail; Peter Nussbaumer; Alfred Wittinghofer; Herbert Waldmann

The K-Ras GTPase is a major target in anticancer drug discovery. However, direct interference with signaling by K-Ras has not led to clinically useful drugs yet. Correct localization and signaling by farnesylated K-Ras is regulated by the prenyl binding protein PDEδ. Interfering with binding of PDEδ to K-Ras by means of small molecules provides a novel opportunity to suppress oncogenic signaling. Here we describe the identification and structure-guided development of novel K-Ras-PDEδ inhibitor chemotypes based on pyrrolopyridazinones and pyrazolopyridazinones that bind to the farnesyl binding pocket of PDEδ with low nanomolar affinity. We delineate the structure-property relationship and in vivo pharmacokinetic (PK) and toxicokinetic (Tox) studies for pyrazolopyridazinone-based K-Ras-PDEδ inhibitors. These findings may inspire novel drug discovery efforts aimed at the development of drugs targeting oncogenic Ras.


Angewandte Chemie | 2017

Small-Molecule Inhibition of the UNC119–Cargo Interaction

Tom Mejuch; Guillaume Garivet; Walter Hofer; Nadine Kaiser; Eyad K. Fansa; Christiane Ehrt; Oliver Koch; Matthias Baumann; Slava Ziegler; Alfred Wittinghofer; Herbert Waldmann

N-Terminal myristoylation facilitates membrane binding and activity of proteins, in particular of Src family kinases, but the underlying mechanisms are only beginning to be understood. The chaperones UNC119A/B regulate the cellular distribution and signaling of N-myristoylated proteins. Selective small-molecule modulators of the UNC119-cargo interaction would be invaluable tools, but have not been reported yet. We herein report the development of the first UNC119-cargo interaction inhibitor, squarunkin A. Squarunkin A selectively inhibits the binding of a myristoylated peptide representing the N-terminus of Src kinase to UNC119A with an IC50 value of 10 nm. It binds to UNC119 proteins in cell lysate and interferes with the activation of Src kinase. Our results demonstrate that small-molecule inhibition of the UNC119-cargo interaction might provide new opportunities for modulating the activity of Src kinases that are independent of direct inhibition of the enzymatic kinase activity.


Journal of Medicinal Chemistry | 2017

Structure-Guided Development of Covalent and Mutant-Selective Pyrazolopyrimidines to Target T790M Drug Resistance in Epidermal Growth Factor Receptor

Julian Engel; Steven J. Smith; Jonas Lategahn; Hannah L. Tumbrink; Lisa Goebel; Christian F. W. Becker; Elisabeth Hennes; Marina Keul; Anke Unger; Heiko Müller; Matthias Baumann; Carsten Schultz-Fademrecht; Georgia Günther; Jan G. Hengstler; Daniel Rauh

Reversible epidermal growth factor receptor (EGFR) inhibitors prompt a beneficial clinical response in non-small cell lung cancer patients who harbor activating mutations in EGFR. However, resistance mutations, particularly the gatekeeper mutation T790M, limit this efficacy. Here, we describe a structure-guided development of a series of covalent and mutant-selective EGFR inhibitors that effectively target the T790M mutant. The pyrazolopyrimidine-based core differs structurally from that of aminopyrimidine-based third-generation EGFR inhibitors and therefore constitutes a new set of inhibitors that target this mechanism of drug resistance. These inhibitors exhibited strong inhibitory effects toward EGFR kinase activity and excellent inhibition of cell growth in the drug-resistant cell line H1975, without significantly affecting EGFR wild-type cell lines. Additionally, we present the in vitro ADME/DMPK parameters for a subset of the inhibitors as well as in vivo pharmacokinetics in mice for a candidate with promising activity profile.


Angewandte Chemie | 2017

Discovery of a Novel Inhibitor of the Hedgehog Signaling Pathway through Cell-based Compound Discovery and Target Prediction

Lea Kremer; Carsten Schultz-Fademrecht; Matthias Baumann; Peter Habenberger; Axel Choidas; Bert Klebl; Susanne Kordes; Hans R. Schöler; Jared Sterneckert; Slava Ziegler; Gisbert Schneider; Herbert Waldmann

Cell-based assays enable monitoring of small-molecule bioactivity in a target-agnostic manner and help uncover new biological mechanisms. Subsequent identification and validation of the small-molecule targets, typically employing proteomics techniques, is very challenging and limited, in particular if the targets are membrane proteins. Herein, we demonstrate that the combination of cell-based bioactive-compound discovery with cheminformatic target prediction may provide an efficient approach to accelerate the process and render target identification and validation more efficient. Using a cell-based assay, we identified the pyrazolo-imidazole smoothib as a new inhibitor of hedgehog (Hh) signaling and an antagonist of the protein smoothened (SMO) with a novel chemotype. Smoothib targets the heptahelical bundle of SMO, prevents its ciliary localization, reduces the expression of Hh target genes, and suppresses the growth of Ptch+/- medulloblastoma cells.


Oncotarget | 2018

TRPC4/TRPC5 channels mediate adverse reaction to the cancer cell cytotoxic agent (-)-Englerin A

Sin Ying Cheung; Matthias Henrot; Mohammad Alsaad; Matthias Baumann; Heiko Müller; Anke Unger; Hussein N. Rubaiy; Ilka Mathar; Klaus Dinkel; Peter Nussbaumer; Bert Klebl; Marc Freichel; Baptiste Rode; Sebastian Trainor; Steven J. Clapcote; Mathias Christmann; Herbert Waldmann; Syed Khawar Abbas; David J. Beech; Naveen S. Vasudev

(-)-Englerin A (EA) is a natural product which has potent cytotoxic effects on renal cell carcinoma cells and other types of cancer cell but not non-cancer cells. Although selectively cytotoxic to cancer cells, adverse reaction in mice and rats has been suggested. EA is a remarkably potent activator of ion channels formed by Transient Receptor Potential Canonical 4 and 5 proteins (TRPC4 and TRPC5) and TRPC4 is essential for EA-mediated cancer cell cytotoxicity. Here we specifically investigated the relevance of TRPC4 and TRPC5 to the adverse reaction. Injection of EA (2 mg.kg-1 i.p.) adversely affected mice for about 1 hour, manifesting as a marked reduction in locomotor activity, after which they fully recovered. TRPC4 and TRPC5 single knockout mice were partially protected and double knockout mice fully protected. TRPC4/TRPC5 double knockout mice were also protected against intravenous injection of EA. Importance of TRPC4/TRPC5 channels was further suggested by pre-administration of Compound 31 (Pico145), a potent and selective small-molecule inhibitor of TRPC4/TRPC5 channels which did not cause adverse reaction itself but prevented adverse reaction to EA. EA was detected in the plasma but not the brain and so peripheral mechanisms were implicated but not identified. The data confirm the existence of adverse reaction to EA in mice and suggest that it depends on a combination of TRPC4 and TRPC5 which therefore overlaps partially with TRPC4-dependent cancer cell cytotoxicity. The underlying nature of the observed adverse reaction to EA, as a consequence of TRPC4/TRPC5 channel activation, remains unclear and warrants further investigation.

Collaboration


Dive into the Matthias Baumann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Rauh

Technical University of Dortmund

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge