Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthias Christandl is active.

Publication


Featured researches published by Matthias Christandl.


Physical Review Letters | 2004

Perfect State Transfer in Quantum Spin Networks

Matthias Christandl; Nilanjana Datta; Artur Ekert; Andrew J. Landahl

We propose a class of qubit networks that admit the perfect state transfer of any quantum state in a fixed period of time. Unlike many other schemes for quantum computation and communication, these networks do not require qubit couplings to be switched on and off. When restricted to N-qubit spin networks of identical qubit couplings, we show that 2log3N is the maximal perfect communication distance for hypercube geometries. Moreover, if one allows fixed but different couplings between the qubits, then perfect state transfer can be achieved over arbitrarily long distances in a linear chain.


Physical Review A | 2005

Perfect transfer of arbitrary states in quantum spin networks

Matthias Christandl; Nilanjana Datta; Tony Dorlas; Artur Ekert; Alastair Kay; Andrew J. Landahl

We propose a class of qubit networks that admit perfect state transfer of any two-dimensional quantum state in a fixed period of time. We further show that such networks can distribute arbitrary entangled states between two distant parties, and can, by using such systems in parallel, transmit the higher-dimensional systems states across the network. Unlike many other schemes for quantum computation and communication, these networks do not require qubit couplings to be switched on and off. When restricted to N-qubit spin networks of identical qubit couplings, we show that 2 log{sub 3}N is the maximal perfect communication distance for hypercube geometries. Moreover, if one allows fixed but different couplings between the qubits then perfect state transfer can be achieved over arbitrarily long distances in a linear chain. This paper expands and extends the work done by Christandl et al., Phys. Rev. Lett. 92, 187902 (2004)


Journal of Mathematical Physics | 2004

“Squashed entanglement”: An additive entanglement measure

Matthias Christandl; Andreas Winter

In this paper, we present a new entanglement monotone for bipartite quantum states. Its definition is inspired by the so-called intrinsic information of classical cryptography and is given by the halved minimum quantum conditional mutual information over all tripartite state extensions. We derive certain properties of the new measure which we call “squashed entanglement”: it is a lower bound on entanglement of formation and an upper bound on distillable entanglement. Furthermore, it is convex, additive on tensor products, and superadditive in general. Continuity in the state is the only property of our entanglement measure which we cannot provide a proof for. We present some evidence, however, that our quantity has this property, the strongest indication being a conjectured Fannes-type inequality for the conditional von Neumann entropy. This inequality is proved in the classical case.


Physical Review Letters | 2009

Postselection Technique for Quantum Channels with Applications to Quantum Cryptography

Matthias Christandl; Robert König; Renato Renner

We propose a general method for studying properties of quantum channels acting on an n-partite system, whose action is invariant under permutations of the subsystems. Our main result is that, in order to prove that a certain property holds for an arbitrary input, it is sufficient to consider the case where the input is a particular de Finetti-type state, i.e., a state which consists of n identical and independent copies of an (unknown) state on a single subsystem. Our technique can be applied to the analysis of information-theoretic problems. For example, in quantum cryptography, we get a simple proof for the fact that security of a discrete-variable quantum key distribution protocol against collective attacks implies security of the protocol against the most general attacks. The resulting security bounds are tighter than previously known bounds obtained with help of the exponential de Finetti theorem.


Physical Review Letters | 2004

Mirror inversion of quantum states in linear registers.

Claudio Albanese; Matthias Christandl; Nilanjana Datta; Artur Ekert

Transfer of data in linear quantum registers can be significantly simplified with preengineered but not dynamically controlled interqubit couplings. We show how to implement a mirror inversion of the state of the register in each excitation subspace with respect to the center of the register. Our construction is especially appealing as it requires no dynamical control over individual interqubit interactions. If, however, individual control of the interactions is available then the mirror inversion operation can be performed on any substring of qubits in the register. In this case, a sequence of mirror inversions can generate any permutation of a quantum state of the involved qubits.


Communications in Mathematical Physics | 2011

Faithful Squashed Entanglement

Fernando G. S. L. Brandao; Matthias Christandl; Jon Yard

Squashed entanglement is a measure for the entanglement of bipartite quantum states. In this paper we present a lower bound for squashed entanglement in terms of a distance to the set of separable states. This implies that squashed entanglement is faithful, that is, it is strictly positive if and only if the state is entangled.We derive the lower bound on squashed entanglement from a lower bound on the quantum conditional mutual information which is used to define squashed entanglement. The quantum conditional mutual information corresponds to the amount by which strong subadditivity of von Neumann entropy fails to be saturated. Our result therefore sheds light on the structure of states that almost satisfy strong subadditivity with equality. The proof is based on two recent results from quantum information theory: the operational interpretation of the quantum mutual information as the optimal rate for state redistribution and the interpretation of the regularised relative entropy of entanglement as an error exponent in hypothesis testing.The distance to the set of separable states is measured in terms of the LOCC norm, an operationally motivated norm giving the optimal probability of distinguishing two bipartite quantum states, each shared by two parties, using any protocol formed by local quantum operations and classical communication (LOCC) between the parties. A similar result for the Frobenius or Euclidean norm follows as an immediate consequence.The result has two applications in complexity theory. The first application is a quasipolynomial-time algorithm solving the weak membership problem for the set of separable states in LOCC or Euclidean norm. The second application concerns quantum Merlin-Arthur games. Here we show that multiple provers are not more powerful than a single prover when the verifier is restricted to LOCC operations thereby providing a new characterisation of the complexity class QMA.


Communications in Mathematical Physics | 2011

The Quantum Reverse Shannon Theorem Based on One-Shot Information Theory

Mario Berta; Matthias Christandl; Renato Renner

The Quantum Reverse Shannon Theorem states that any quantum channel can be simulated by an unlimited amount of shared entanglement and an amount of classical communication equal to the channel’s entanglement assisted classical capacity. In this paper, we provide a new proof of this theorem, which has previously been proved by Bennett, Devetak, Harrow, Shor, and Winter. Our proof has a clear structure being based on two recent information-theoretic results: one-shot Quantum State Merging and the Post-Selection Technique for quantum channels.


Physical Review Letters | 2007

Quantum Computational Complexity of the N-Representability Problem: QMA Complete

Yi-Kai Liu; Matthias Christandl; Frank Verstraete

We study the computational complexity of the N-representability problem in quantum chemistry. We show that this problem is quantum Merlin-Arthur complete, which is the quantum generalization of nondeterministic polynomial time complete. Our proof uses a simple mapping from spin systems to fermionic systems, as well as a convex optimization technique that reduces the problem of finding ground states to N representability.We study the computational complexity of the N-representability problem in quantum chemistry. We show that this problem is QMA-complete, which is the quantum generalization of NP-complete. Our proof uses a simple mapping from spin systems to fermionic systems, as well as a convex optimization technique that reduces the problem of finding ground states to N-representability.


Physical Review Letters | 2012

Reliable Quantum State Tomography

Matthias Christandl; Renato Renner

Quantum state tomography is the task of inferring the state of a quantum system by appropriate measurements. Since the frequency distributions of the outcomes of any finite number of measurements will generally deviate from their asymptotic limits, the estimates computed by standard methods do not in general coincide with the true state and, therefore, have no operational significance unless their accuracy is defined in terms of error bounds. Here we show that quantum state tomography, together with an appropriate data analysis procedure, yields reliable and tight error bounds, specified in terms of confidence regions-a concept originating from classical statistics. Confidence regions are subsets of the state space in which the true state lies with high probability, independently of any prior assumption on the distribution of the possible states. Our method for computing confidence regions can be applied to arbitrary measurements including fully coherent ones; it is practical and particularly well suited for tomography on systems consisting of a small number of qubits, which are currently in the focus of interest in experimental quantum information science.


Science | 2013

Entanglement polytopes: multiparticle entanglement from single-particle information.

Michael Walter; Brent Doran; David Gross; Matthias Christandl

Unraveling Entanglement Entanglement is a curious property of some quantum mechanical systems, exploited in applications such as quantum information processing. Walter et al. (p. 1205) used an algebraic geometry approach to represent the entanglement of a multiparticle system in a pure state in the geometric space whose axes are associated with the properties of the individual particles. In that space, entanglement classes—collections of entangled states that can be transformed into each other—correspond to different convex polytopes, making it possible to distinguish between the classes. An algebraic geometry approach provides insight into the nature of entanglement of many particles. Entangled many-body states are an essential resource for quantum computing and interferometry. Determining the type of entanglement present in a system usually requires access to an exponential number of parameters. We show that in the case of pure, multiparticle quantum states, features of the global entanglement can already be extracted from local information alone. This is achieved by associating any given class of entanglement with an entanglement polytope—a geometric object that characterizes the single-particle states compatible with that class. Our results, applicable to systems of arbitrary size and statistics, give rise to local witnesses for global pure-state entanglement and can be generalized to states affected by low levels of noise.

Collaboration


Dive into the Matthias Christandl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mario Berta

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Winter

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Péter Vrana

Budapest University of Technology and Economics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge