Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthias Lorenz is active.

Publication


Featured researches published by Matthias Lorenz.


Analytical and Bioanalytical Chemistry | 2008

Development of a multipurpose ion source for LC-MS and GC-API MS.

Ralf Schiewek; Matthias Lorenz; Ronald Giese; Klaus J. Brockmann; Thorsten Benter; Siegmar Gäb; Oliver J. Schmitz

Over the past decade, multimode ion sources operating at atmospheric pressure (i.e., more than one ionization method is operative in the ion source enclosure) have received considerable interest. Simultaneous operation of different ionization methods targeting different compound classes within one analysis run has several advantages, including enhanced sample throughput and thus significant laboratory cost reductions. Potential drawbacks are enhanced ion suppression and other undesirable effects of the simultaneous operation of ionization methods. In this contribution we present an alternative approach—the development and characterization of a widely applicable, multipurpose ion source operating at atmospheric pressure. The optimized source geometry allows rapid changing from LC-API methods (ESI, APCI, APLI) to GC-API methods (APCI, APLI, DA-APLI) along with the appropriate coupling of chromatographic equipment required. In addition, true multimode operation of the source is demonstrated for LC-ESI/APLI and LC-APCI/APLI.


Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science | 2015

Comparison of residual stresses in Inconel 718 simple parts made by electron beam melting and direct laser metal sintering

Lindsay M. Sochalski-Kolbus; E. A. Payzant; Paris A. Cornwell; Thomas R. Watkins; S. S. Babu; Ryan R. Dehoff; Matthias Lorenz; Olga S. Ovchinnikova; C. Duty

Residual stress profiles were mapped using neutron diffraction in two simple prism builds of Inconel 718: one fabricated with electron beam melting (EBM) and the other with direct laser metal sintering. Spatially indexed stress-free cubes were obtained by electrical discharge machining (EDM) equivalent prisms of similar shape. The (311) interplanar spacings from the EDM sectioned sample were compared to the interplanar spacings calculated to fulfill stress and moment balance. We have shown that applying stress and moment balance is a necessary supplement to the measurements for the stress-free cubes with respect to accurate stress calculations in additively manufactured components. In addition, our work has shown that residual stresses in electron beam melted parts are much smaller than that of direct laser metal sintered parts most likely due to the powder preheating step in the EBM process.


Journal of the American Society for Mass Spectrometry | 2008

The distribution of ion acceptance in atmospheric pressure ion sources: Spatially resolved APLI measurements

Matthias Lorenz; Ralf Schiewek; Klaus J. Brockmann; Oliver J. Schmitz; Siegmar Gäb; Thorsten Benter

It is demonstrated that spatially resolved mass selected analysis using atmospheric pressure laser ionization mass spectrometry (APLI MS) represents a new powerful tool for mechanistic studies of ion-molecule chemistry occurring within atmospheric pressure (AP) ion sources as well as for evaluation and optimization of ion source performance. A focused low-energy UV laser beam is positioned computer controlled orthogonally on a two-dimensional grid in the ion source enclosure. Resonance enhanced multiphoton ionization (REMPI) of selected analytes occurs only within the confined volume of the laser beam. Depending on the experimental conditions and the reactivity of the primary photo-generated ions, specific signal patterns become visible after data treatment, as visualized in, e.g., contour or pseudo-color plots. The resulting spatial dependence of sensitivity is defined in this context as the distribution of ion acceptance (DIA) of the source/analyzer combination. This approach provides a much more detailed analysis of the diverse processes occurring in AP ion sources compared with conventional bulk signal response measurements.


Rapid Communications in Mass Spectrometry | 2013

Laser microdissection and atmospheric pressure chemical ionization mass spectrometry coupled for multimodal imaging

Matthias Lorenz; Olga S. Ovchinnikova; Vilmos Kertesz; Gary J. Van Berkel

RATIONALE Improvement in spatial resolution of atmospheric pressure molecular chemical imaging is required to resolve distinct surface features in the low micrometer and sub-micrometer scale. Laser capture microdissection systems have the capability to focus laser light to a few micrometers. This type of system, when employed for laser ablation (LA) mass spectrometry (MS)-based chemical imaging, has the potential to achieve high spatial resolution with multimodal optical and chemical imaging capability. METHODS A commercially available laser capture microdissection system was coupled to a modified ion source of a mass spectrometer. This design allowed for sampling of laser-ablated material via a transfer tube directly into the ionization region. Ionization of the ablated material was accomplished using atmospheric pressure chemical ionization (APCI). RESULTS Rhodamine 6G dye of red permanent marker ink in a laser etched pattern as well as cholesterol and phosphatidylcholine in a cerebellum mouse brain thin tissue section were identified and imaged from the mass spectral data. Employing a spot diameter of 8 µm using the 10× microscope cutting objective and lateral oversampling resulted in a pixel size of about 3.7 µm in the same dimension. Distinguishing between features approximately 13 µm apart in a cerebellum mouse brain thin tissue section was demonstrated in a multimodal fashion co-registering optical and mass spectral images. CONCLUSIONS A LA/APCI-MS system was developed that comprised a commercially available laser microdissection instrument for transmission geometry LA and a modestly modified ion source for secondary ionization of the ablated material. The set-up was successfully applied for multimodal imaging using the ability to co-register bright field, fluorescence and mass spectral chemical images on one platform.


Journal of the American Society for Mass Spectrometry | 2009

Evidence of neutral radical induced analyte ion transformations in APPI and Near-VUV APLI

Hendrik Kersten; Valerie Funcke; Matthias Lorenz; Klaus J. Brockmann; Thorsten Benter; Rob O’Brien

We report on the reactions of neutral radical species [OH, Cl, O(3P), H], generated in a typical atmospheric pressure ionization (API) source upon irradiation of the sample gases with either 193 nm laser radiation or 124 nm VUV light, the latter commonly used in atmospheric pressure photoionization (APPI). The present investigations focus on the polycyclic aromatic hydrocarbon pyrene as representative of the aromatic compound class. Experimental results are supported by computational methods: simple kinetic models are used to estimate the temporal evolution of the concentrations of reactants, intermediates, and final products, whereas density functional theory (DFT) energy calculations are carried out to further elucidate the proposed reaction pathways. The neutral radicals are generated upon photolysis of background water and oxygen always present in appreciable mixing ratios in typical API sources. Substantial amounts of oxygenated analyte product ions are observed using both techniques. In contrast, upon atmospheric pressure laser ionization (APLI) with 248 nm radiation, oxygenated products are virtually absent. In addition, kinetic data evaluation yielded a bimolecular rate constant of k=(1.9±0.9)×10−9 cm3 molecule−1 s−1 for the reaction of the pyrene radical cation with OH radicals.


Rapid Communications in Mass Spectrometry | 2014

Transmission geometry laser ablation into a non-contact liquid vortex capture probe for mass spectrometry imaging

Olga S. Ovchinnikova; Deepak Bhandari; Matthias Lorenz; Gary J. Van Berkel

RATIONALE Capture of material from a laser ablation plume into a continuous flow stream of solvent provides the means for uninterrupted sampling, transport and ionization of collected material for coupling with mass spectral analysis. Reported here is the use of vertically aligned transmission geometry laser ablation in combination with a new non-contact liquid vortex capture probe coupled with electrospray ionization for spot sampling and chemical imaging with mass spectrometry. METHODS A vertically aligned continuous flow liquid vortex capture probe was positioned directly underneath a sample surface in a transmission geometry laser ablation (355 nm, 10 Hz, 7 ns pulse width) set up to capture into solution the ablated material. The outlet of the vortex probe was coupled to the Turbo V™ ion source of an AB SCIEX TripleTOF 5600+ mass spectrometer. System operation and performance metrics were tested using inked patterns and thin tissue sections. Glass slides and slides designed especially for laser capture microdissection, viz., DIRECTOR(®) slides and PEN 1.0 (polyethylene naphthalate) membrane slides, were used as sample substrates. RESULTS The estimated capture efficiency of laser-ablated material was 24%, which was enabled by the use of a probe with large liquid surface area (~2.8 mm(2) ) and with gravity to help direct ablated material vertically down towards the probe. The swirling vortex action of the liquid surface potentially enhanced capture and dissolution not only of particulates, but also of gaseous products of the laser ablation. The use of DIRECTOR(®) slides and PEN 1.0 (polyethylene naphthalate) membrane slides as sample substrates enabled effective ablation of a wide range of sample types (basic blue 7, polypropylene glycol, insulin and cyctochrome c) without photodamage using a UV laser. Imaging resolution of about 6 µm was demonstrated for stamped ink on DIRECTOR(®) slides based on the ability to distinguish features present both in the optical and in the chemical image. This imaging resolution was 20 times better than the previous best reported results with laser ablation/liquid sample capture mass spectrometry imaging. Using thin sections of brain tissue the chemical image of a selected lipid was obtained with an estimated imaging resolution of about 50 µm. CONCLUSIONS A vertically aligned, transmission geometry laser ablation liquid vortex capture probe, electrospray ionization mass spectrometry system provides an effective means for spatially resolved spot sampling and imaging with mass spectrometry.


Journal of the American Society for Mass Spectrometry | 2013

Atmospheric pressure ion source development: experimental validation of simulated ion trajectories within complex flow and electrical fields.

Walter Wissdorf; Matthias Lorenz; Thorsten Pöhler; Herwart Hönen; Thorsten Benter

AbstractThree-dimensionally (3D) resolved ion trajectory calculations within the complex viscous flow field of an atmospheric pressure ion source are presented. The model calculations are validated with spatially resolved measurements of the relative sensitivity distribution within the source enclosure, referred to as the distribution of ion acceptance (DIA) of the mass analyzer. In previous work, we have shown that the DIA shapes as well as the maximum signal strengths strongly depend on ion source operational parameters such as gas flows and temperatures, as well as electrical field gradients established by various source electrode potentials (e.g., capillary inlet port potential and spray shield potential). In all cases studied, distinct, reproducible, and, to some extent, surprising DIA patterns were observed. We have thus attempted to model selected experimental operational source modes (called operational points) using a validated computational flow dynamics derived 3D-velocity field as an input parameter set for SIMION/SDS, along with a suite of custom software for data analysis and parameter set processing. Despite the complexity of the system, the modeling results reproduce the experimentally derived DIA unexpectedly well. It is concluded that SIMION/SDS in combination with accurate computational fluid dynamics (CFD) input data and adequate analysis software is capable of successfully modeling operational points of an atmospheric pressure ion (API) source. This approach should be very useful in the computer-aided design of future API sources. Figureᅟ


Analytical Chemistry | 2013

Laser Ablation Sampling of Materials Directly into the Formed Liquid Microjunction of a Continuous Flow Surface Sampling Probe/Electrospray Ionization Emitter for Mass Spectral Analysis and Imaging

Olga S. Ovchinnikova; Matthias Lorenz; Vilmos Kertesz; Gary J. Van Berkel

Transmission geometry laser ablation directly into a formed liquid microjunction of a continuous flow liquid microjunction surface sampling probe/electrospray ionization emitter was utilized for molecular and elemental detection and mass spectrometry imaging. The ability to efficiently capture and ionize ablated material was demonstrated by the detection of various small soluble n-mers of polyaniline and silver ion solvent clusters formed from laser ablation of electropolymerized polyaniline and silver thin films, respectively. In addition, analysis of surfaces that contain soluble components was accomplished by coating or laminating the sample with an insoluble film to enable liquid junction formation without directly extracting material from the surface. The ability to perform mass spectrometry imaging at a spatial resolution of about 50 μm was illustrated by using laminated inked patterns on a microscope slide. In general, these data demonstrate at least an order of magnitude signal enhancement compared to the noncontact, laser ablation droplet capture-based surface sampling/ionization approaches that have been previously presented.


Rapid Communications in Mass Spectrometry | 2014

Fully automated laser ablation liquid capture surface analysis using nanoelectrospray ionization mass spectrometry

Matthias Lorenz; Olga S. Ovchinnikova; Gary J. Van Berkel

RATIONALE Laser ablation provides for the possibility of sampling a large variety of surfaces with high spatial resolution. This type of sampling when employed in conjunction with liquid capture followed by nanoelectrospray ionization provides the opportunity for sensitive and prolonged interrogation of samples by mass spectrometry as well as the ability to analyze surfaces not amenable to direct liquid extraction. METHODS A fully automated, reflection geometry, laser ablation liquid capture spot sampling system was achieved by incorporating appropriate laser fiber optics and a focusing lens into a commercially available, liquid extraction surface analysis (LESA(®))-ready Advion TriVersa NanoMate system. RESULTS Under optimized conditions about 10% of laser-ablated material could be captured in a droplet positioned vertically over the ablation region using the NanoMate robot-controlled pipette. The sampling spot size area with this laser ablation liquid capture surface analysis (LA/LCSA) mode of operation (typically about 120 µm × 160 µm) was approximately 50 times smaller than that achievable by direct liquid extraction using LESA(®) (ca 1 mm diameter liquid extraction spot). The setup was successfully applied for the analysis of ink on glass and paper as well as the endogenous components in Alstroemeria Yellow King flower petals. In a second mode of operation with a comparable sampling spot size, termed laser ablation/LESA(®), the laser system was used to drill through, penetrate, or otherwise expose material beneath a solvent resistant surface. Once drilled, LESA(®) was effective in sampling soluble material exposed at that location on the surface. CONCLUSIONS Incorporating the capability for different laser ablation liquid capture spot sampling modes of operation into a LESA(®)-ready Advion TriVersa NanoMate enhanced the spot sampling spatial resolution of this device and broadened the surface types amenable to analysis to include absorbent and solvent-resistant materials.


Analytical Chemistry | 2014

Controlled-resonant surface tapping-mode scanning probe electrospray ionization mass spectrometry imaging.

Matthias Lorenz; Olga S. Ovchinnikova; Vilmos Kertesz; Gary J. Van Berkel

This paper reports on the advancement of a controlled-resonant surface tapping-mode single capillary liquid junction extraction/ESI emitter for mass spectrometry imaging. The basic instrumental setup and the general operation of the system were discussed, and optimized performance metrics were presented. The ability to spot sample, lane scan, and chemically image in an automated and controlled fashion were demonstrated. Rapid, automated spot sampling was demonstrated for a variety of compound types, including the cationic dye basic blue 7, the oligosaccharide cellopentaose, and the protein equine heart cytochrome c. The system was used for lane scanning and chemical imaging of the cationic dye crystal violet in inked lines on glass and for lipid distributions in mouse brain thin tissue sections. Imaging of the lipids in mouse brain tissue under optimized conditions provided a spatial resolution of approximately 35 μm based on the ability to distinguish between features observed both in the optical and mass spectral chemical images. The sampling spatial resolution of this system was comparable to the best resolution that has been reported for other types of atmospheric pressure liquid extraction-based surface sampling/ionization techniques used for mass spectrometry imaging.

Collaboration


Dive into the Matthias Lorenz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olga S. Ovchinnikova

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gary J. Van Berkel

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Oliver J. Schmitz

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Siegmar Gäb

University of Wuppertal

View shared research outputs
Top Co-Authors

Avatar

Vilmos Kertesz

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge