Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthias Steinfath is active.

Publication


Featured researches published by Matthias Steinfath.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Starch as a major integrator in the regulation of plant growth

Ronan Sulpice; Eva-Theresa Pyl; Hirofumi Ishihara; Sandra Trenkamp; Matthias Steinfath; Hanna Witucka-Wall; Yves Gibon; Bjoern Usadel; Fabien Porée; Maria Piques; Maria von Korff; Marie Caroline Steinhauser; Joost J. B. Keurentjes; Manuela Guenther; Melanie Hoehne; Joachim Selbig; Alisdair R. Fernie; Thomas Altmann; Mark Stitt

Rising demand for food and bioenergy makes it imperative to breed for increased crop yield. Vegetative plant growth could be driven by resource acquisition or developmental programs. Metabolite profiling in 94 Arabidopsis accessions revealed that biomass correlates negatively with many metabolites, especially starch. Starch accumulates in the light and is degraded at night to provide a sustained supply of carbon for growth. Multivariate analysis revealed that starch is an integrator of the overall metabolic response. We hypothesized that this reflects variation in a regulatory network that balances growth with the carbon supply. Transcript profiling in 21 accessions revealed coordinated changes of transcripts of more than 70 carbon-regulated genes and identified 2 genes (myo-inositol-1-phosphate synthase, a Kelch-domain protein) whose transcripts correlate with biomass. The impact of allelic variation at these 2 loci was shown by association mapping, identifying them as candidate lead genes with the potential to increase biomass production.


Proceedings of the National Academy of Sciences of the United States of America | 2007

The metabolic signature related to high plant growth rate in Arabidopsis thaliana.

Rhonda C. Meyer; Matthias Steinfath; Jan Lisec; Martina Becher; Hanna Witucka-Wall; Ottó Törjék; Oliver Fiehn; Änne Eckardt; Lothar Willmitzer; Joachim Selbig; Thomas Altmann

The decline of available fossil fuel reserves has triggered world-wide efforts to develop alternative energy sources based on plant biomass. Detailed knowledge of the relations of metabolism and biomass accumulation can be expected to yield powerful novel tools to accelerate and enhance energy plant breeding programs. We used metabolic profiling in the model Arabidopsis to study the relation between biomass and metabolic composition using a recombinant inbred line (RIL) population. A highly significant canonical correlation (0.73) was observed, revealing a close link between biomass and a specific combination of metabolites. Dividing the entire data set into training and test sets resulted in a median correlation between predicted and true biomass of 0.58. The demonstrated high predictive power of metabolic composition for biomass features this composite measure as an excellent biomarker and opens new opportunities to enhance plant breeding specifically in the context of renewable resources.


Plant Journal | 2007

Identification of metabolic and biomass QTL in Arabidopsis thaliana in a parallel analysis of RIL and IL populations.

Jan Lisec; Rhonda C. Meyer; Matthias Steinfath; Henning Redestig; Martina Becher; Hanna Witucka-Wall; Oliver Fiehn; Ottó Törjék; Joachim Selbig; Thomas Altmann; Lothar Willmitzer

Plant growth and development are tightly linked to primary metabolism and are subject to natural variation. In order to obtain an insight into the genetic factors controlling biomass and primary metabolism and to determine their relationships, two Arabidopsis thaliana populations [429 recombinant inbred lines (RIL) and 97 introgression lines (IL), derived from accessions Col-0 and C24] were analyzed with respect to biomass and metabolic composition using a mass spectrometry-based metabolic profiling approach. Six and 157 quantitative trait loci (QTL) were identified for biomass and metabolic content, respectively. Two biomass QTL coincide with significantly more metabolic QTL (mQTL) than statistically expected, supporting the notion that the metabolic profile and biomass accumulation of a plant are linked. On the same basis, three out the six biomass QTL can be simulated purely on the basis of metabolic composition. QTL based on analysis of the introgression lines were in substantial agreement with the RIL-based results: five of six biomass QTL and 55% of the mQTL found in the RIL population were also found in the IL population at a significance level of P ≤ 0.05, with >80% agreement on the allele effects. Some of the differences could be attributed to epistatic interactions. Depending on the search conditions, metabolic pathway-derived candidate genes were found for 24–67% of all tested mQTL in the database AraCyc 3.5. This dataset thus provides a comprehensive basis for the detection of functionally relevant variation in known genes with metabolic function and for identification of genes with hitherto unknown roles in the control of metabolism.


The Plant Cell | 2008

Mode of Inheritance of Primary Metabolic Traits in Tomato

Nicolas Schauer; Yaniv Semel; Ilse Balbo; Matthias Steinfath; Dirk Repsilber; Joachim Selbig; Tzili Pleban; Dani Zamir; Alisdair R. Fernie

To evaluate components of fruit metabolic composition, we have previously metabolically phenotyped tomato (Solanum lycopersicum) introgression lines containing segmental substitutions of wild species chromosome in the genetic background of a cultivated variety. Here, we studied the hereditability of the fruit metabolome by analyzing an additional years harvest and evaluating the metabolite profiles of lines heterozygous for the introgression (ILHs), allowing the evaluation of putative quantitative trait locus (QTL) mode of inheritance. These studies revealed that most of the metabolic QTL (174 of 332) were dominantly inherited, with relatively high proportions of additively (61 of 332) or recessively (80 of 332) inherited QTL and a negligible number displaying the characteristics of overdominant inheritance. Comparison of the mode of inheritance of QTL revealed that several metabolite pairs displayed a similar mode of inheritance of QTL at the same chromosomal loci. Evaluation of the association between morphological and metabolic traits in the ILHs revealed that this correlation was far less prominent, due to a reduced variance in the harvest index within this population. These data are discussed in the context of genomics-assisted breeding for crop improvement, with particular focus on the exploitation of wide biodiversity.


The Plant Cell | 2010

Network Analysis of Enzyme Activities and Metabolite Levels and Their Relationship to Biomass in a Large Panel of Arabidopsis Accessions

Ronan Sulpice; Sandra Trenkamp; Matthias Steinfath; Yves Gibon; Hanna Witucka-Wall; Eva-Theresa Pyl; Hendrik Tschoep; Marie Caroline Steinhauser; Manuela Guenther; Melanie Hoehne; Johann M. Rohwer; Thomas Altmann; Alisdair R. Fernie; Mark Stitt

This work uses natural genetic diversity to study species-wide connectivity between metabolites, enzymes, and biomass. The resulting network analysis, based on 129 Arabidopsis accessions, shows that biomass can be predicted by two independent integrative metabolic biomarkers: preferential investment in photosynthetic machinery and optimization of carbon use. Natural genetic diversity provides a powerful resource to investigate how networks respond to multiple simultaneous changes. In this work, we profile maximum catalytic activities of 37 enzymes from central metabolism and generate a matrix to investigate species-wide connectivity between metabolites, enzymes, and biomass. Most enzyme activities change in a highly coordinated manner, especially those in the Calvin-Benson cycle. Metabolites show coordinated changes in defined sectors of metabolism. Little connectivity was observed between maximum enzyme activities and metabolites, even after applying multivariate analysis methods. Measurements of posttranscriptional regulation will be required to relate these two functional levels. Individual enzyme activities correlate only weakly with biomass. However, when they are used to estimate protein abundances, and the latter are summed and expressed as a fraction of total protein, a significant positive correlation to biomass is observed. The correlation is additive to that obtained between starch and biomass. Thus, biomass is predicted by two independent integrative metabolic biomarkers: preferential investment in photosynthetic machinery and optimization of carbon use.


Bioinformatics | 2001

Automated image analysis for array hybridization experiments

Matthias Steinfath; Wasco Wruck; Henrik Seidel; Hans Lehrach; Uwe Radelof; John O’brien

MOTIVATION Image analysis is a major part of data evaluation for array hybridization experiments in molecular biology. The program presented here is designed to analyze automatically images from hybridization experiments with various arrangements: different kinds of probes (oligonucleotides or complex probes), different supports (nylon filters or glass slides), different labeling of probes (radioactively or fluorescently). The program is currently applied to oligonucleotide fingerprinting projects and complex hybridizations. The only precondition for the use of the program is that the targets are arrayed in a grid, which can be approximately transformed to an orthogonal equidistant grid by a projective mapping. RESULTS We demonstrate that our program can cope with the following problems: global distortion of the grid, missing of grid nodes, local deviation of the spot from its specified grid position. This is checked by different quality measures. The image analysis of oligonucleotide fingerprint experiments on an entire genetic library is used, in clustering procedures, to group related clones together. The results show that the program yields automatically generated high quality input data for follow up analysis such as clustering procedures. AVAILABILITY The executable files will be available upon request for academics.


Plant Journal | 2009

Identification of heterotic metabolite QTL in Arabidopsis thaliana RIL and IL populations

Jan Lisec; Matthias Steinfath; Rhonda C. Meyer; Joachim Selbig; Albrecht E. Melchinger; Lothar Willmitzer; Thomas Altmann

Two mapping populations of a cross between the Arabidopsis thaliana accessions Col-0 and C24 were cultivated and analyzed with respect to the levels of 181 metabolites to elucidate the biological phenomenon of heterosis at the metabolic level. The relative mid-parent heterosis in the F(1) hybrids was <20% for most metabolic traits. The first mapping population consisting of 369 recombinant inbred lines (RILs) and their test cross progeny with both parents allowed us to determine the position and effect of 147 quantitative trait loci (QTL) for metabolite absolute mid-parent heterosis (aMPH). Furthermore, we identified 153 and 83 QTL for augmented additive (Z(1)) and dominance effects (Z(2)), respectively. We identified putative candidate genes for these QTL using the aracyc database (http://www.arabidopsis.org/biocyc), and calculated the average degree of dominance, which was within the dominance and over-dominance range for most metabolites. Analyzing a second population of 41 introgression lines (ILs) and their test crosses with the recurrent parent, we identified 634 significant differences in metabolite levels. Nine per cent of these effects were classified as over-dominant, according to the mode of inheritance. A comparison of both approaches suggested epistasis as a major contributor to metabolite heterosis in Arabidopsis. A linear combination of metabolite levels was shown to significantly correlate with biomass heterosis (r = 0.62).


Theoretical and Applied Genetics | 2010

QTL analysis of early stage heterosis for biomass in Arabidopsis

Rhonda C. Meyer; Barbara Kusterer; Jan Lisec; Matthias Steinfath; Martina Becher; Hanno Scharr; Albrecht E. Melchinger; Joachim Selbig; Ulrich Schurr; Lothar Willmitzer; Thomas Altmann

The main objective of this study was to identify genomic regions involved in biomass heterosis using QTL, generation means, and mode-of-inheritance classification analyses. In a modified North Carolina Design III we backcrossed 429 recombinant inbred line and 140 introgression line populations to the two parental accessions, C24 and Col-0, whose F1 hybrid exhibited 44% heterosis for biomass. Mid-parent heterosis in the RILs ranged from −31 to 99% for dry weight and from −58 to 143% for leaf area. We detected ten genomic positions involved in biomass heterosis at an early developmental stage, individually explaining between 2.4 and 15.7% of the phenotypic variation. While overdominant gene action was prevalent in heterotic QTL, our results suggest that a combination of dominance, overdominance and epistasis is involved in biomass heterosis in this Arabidopsis cross.


Plant Biotechnology Journal | 2010

Discovering plant metabolic biomarkers for phenotype prediction using an untargeted approach

Matthias Steinfath; Nadine Strehmel; Rolf Peters; Nicolas Schauer; Detlef Groth; Jan Hummel; Martin Steup; Joachim Selbig; Joachim Kopka; Peter Geigenberger; Joost T. van Dongen

Biomarkers are used to predict phenotypical properties before these features become apparent and, therefore, are valuable tools for both fundamental and applied research. Diagnostic biomarkers have been discovered in medicine many decades ago and are now commonly applied. While this is routine in the field of medicine, it is of surprise that in agriculture this approach has never been investigated. Up to now, the prediction of phenotypes in plants was based on growing plants and assaying the organs of interest in a time intensive process. For the first time, we demonstrate in this study the application of metabolomics to predict agronomic important phenotypes of a crop plant that was grown in different environments. Our procedure consists of established techniques to screen untargeted for a large amount of metabolites in parallel, in combination with machine learning methods. By using this combination of metabolomics and biomathematical tools metabolites were identified that can be used as biomarkers to improve the prediction of traits. The predictive metabolites can be selected and used subsequently to develop fast, targeted and low-cost diagnostic biomarker assays that can be implemented in breeding programs or quality assessment analysis. The identified metabolic biomarkers allow for the prediction of crop product quality. Furthermore, marker-assisted selection can benefit from the discovery of metabolic biomarkers when other molecular markers come to its limitation. The described marker selection method was developed for potato tubers, but is generally applicable to any crop and trait as it functions independently of genomic information.


Proteomics | 2008

A rapid approach for phenotype-screening and database independent detection of cSNP/protein polymorphism using mass accuracy precursor alignment

Wolfgang Hoehenwarter; Joost T. van Dongen; Stefanie Wienkoop; Matthias Steinfath; Jan Hummel; Alexander Erban; Ronan Sulpice; Babette Regierer; Joachim Kopka; Peter Geigenberger; Wolfram Weckwerth

The dynamics of a proteome can only be addressed with large‐scale, high‐throughput methods. To cope with the inherent complexity, techniques based on targeted quantification using proteotypic peptides are arising. This is an essential systems biology approach; however, for the exploratory discovery of unexpected markers, nontargeted detection of proteins, and protein modifications is indispensable. We present a rapid label‐free shotgun proteomics approach that extracts relevant phenotype‐specific peptide product ion spectra in an automated workflow without prior identification. These product ion spectra are subsequently sequenced with database search and de novo prediction algorithms. We analyzed six potato tuber cultivars grown on three plots of two geographically separated fields in Germany. For data mining about 1.5 million spectra from 107 analyses were aligned and statistically examined in approximately 1 day. Several cultivar‐specific protein markers were detected. Based on de novo‐sequencing a dominant protein polymorphism not detectable in the available EST‐databases was assigned exclusively to a specific potato cultivar. The approach is applicable to organisms with unsequenced or incomplete genomes and to the automated extraction of relevant mass spectra that potentially cannot be identified by genome/EST‐based search algorithms.

Collaboration


Dive into the Matthias Steinfath's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge