Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthias Zytnicki is active.

Publication


Featured researches published by Matthias Zytnicki.


Cell | 2010

Long noncoding RNAs with enhancer-like function in human cells

Ulf Andersson Ørom; Thomas Derrien; Malte Beringer; Kiranmai Gumireddy; Alessandro Gardini; Giovanni Bussotti; Fan Lai; Matthias Zytnicki; Cedric Notredame; Qihong Huang; Roderic Guigó; Ramin Shiekhattar

While the long noncoding RNAs (ncRNAs) constitute a large portion of the mammalian transcriptome, their biological functions has remained elusive. A few long ncRNAs that have been studied in any detail silence gene expression in processes such as X-inactivation and imprinting. We used a GENCODE annotation of the human genome to characterize over a thousand long ncRNAs that are expressed in multiple cell lines. Unexpectedly, we found an enhancer-like function for a set of these long ncRNAs in human cell lines. Depletion of a number of ncRNAs led to decreased expression of their neighboring protein-coding genes, including the master regulator of hematopoiesis, SCL (also called TAL1), Snai1 and Snai2. Using heterologous transcription assays we demonstrated a requirement for the ncRNAs in activation of gene expression. These results reveal an unanticipated role for a class of long ncRNAs in activation of critical regulators of development and differentiation.


New Phytologist | 2013

Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (Natural resistance‐associated macrophage protein 6) gene involved in pathogen resistance

Sonia Campo; Cristina Peris-Peris; Christelle Siré; Ana Beatriz Moreno; Livia Donaire; Matthias Zytnicki; Cedric Notredame; César Llave; Blanca San Segundo

Plants have evolved efficient defence mechanisms to defend themselves from pathogen attack. Although many studies have focused on the transcriptional regulation of defence responses, less is known about the involvement of microRNAs (miRNAs) as post-transcriptional regulators of gene expression in plant immunity. This work investigates miRNAs that are regulated by elicitors from the blast fungus Magnaporthe oryzae in rice (Oryza sativa). Small RNA libraries were constructed from rice tissues and subjected to high-throughput sequencing for the identification of elicitor-responsive miRNAs. Target gene expression was examined by microarray analysis. Transgenic lines were used for the analysis of miRNA functioning in disease resistance. Elicitor treatment is accompanied by dynamic alterations in the expression of a significant number of miRNAs, including new members of annotated miRNAs. Novel miRNAs from rice are proposed. We report a new rice miRNA, osa-miR7695, which negatively regulates an alternatively spliced transcript of OsNramp6 (Natural resistance-associated macrophage protein 6). This novel miRNA experienced natural and domestication selection events during evolution, and its overexpression in rice confers pathogen resistance. This study highlights an miRNA-mediated regulation of OsNramp6 in disease resistance, whilst illustrating the existence of a novel regulatory network that integrates miRNA function and mRNA processing in plant immunity.


Artificial Intelligence | 2010

Soft arc consistency revisited

Martin C. Cooper; S. de Givry; M. Sanchez; Thomas Schiex; Matthias Zytnicki; Tomas Werner

The Valued Constraint Satisfaction Problem (VCSP) is a generic optimization problem defined by a network of local cost functions defined over discrete variables. It has applications in Artificial Intelligence, Operations Research, Bioinformatics and has been used to tackle optimization problems in other graphical models (including discrete Markov Random Fields and Bayesian Networks). The incremental lower bounds produced by local consistency filtering are used for pruning inside Branch and Bound search. In this paper, we extend the notion of arc consistency by allowing fractional weights and by allowing several arc consistency operations to be applied simultaneously. Over the rationals and allowing simultaneous operations, we show that an optimal arc consistency closure can theoretically be determined in polynomial time by reduction to linear programming. This defines Optimal Soft Arc Consistency (OSAC). To reach a more practical algorithm, we show that the existence of a sequence of arc consistency operations which increases the lower bound can be detected by establishing arc consistency in a classical Constraint Satisfaction Problem (CSP) derived from the original cost function network. This leads to a new soft arc consistency method, called, Virtual Arc Consistency which produces improved lower bounds compared with previous techniques and which can solve submodular cost functions. These algorithms have been implemented and evaluated on a variety of problems, including two difficult frequency assignment problems which are solved to optimality for the first time. Our implementation is available in the open source toulbar2 platform.


Nature plants | 2015

Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation

Eva Maria Willing; Vimal Rawat; Terezie Mandáková; Florian Maumus; Geo Velikkakam James; Karl Nordström; Claude Becker; Norman Warthmann; Claudia Chica; Bogna Szarzynska; Matthias Zytnicki; Maria C. Albani; Christiane Kiefer; Sara Bergonzi; Loren Castaings; Julieta L. Mateos; Markus C. Berns; Nora Bujdoso; Thomas Piofczyk; Laura de Lorenzo; Cristina Barrero-Sicilia; Isabel Mateos; Mathieu Piednoël; Jörg Hagmann; Romy Chen-Min-Tao; Raquel Iglesias-Fernández; Stephan C. Schuster; Carlos Alonso-Blanco; François Roudier; Pilar Carbonero

Despite evolutionary conserved mechanisms to silence transposable element activity, there are drastic differences in the abundance of transposable elements even among closely related plant species. We conducted a de novo assembly for the 375 Mb genome of the perennial model plant, Arabis alpina. Analysing this genome revealed long-lasting and recent transposable element activity predominately driven by Gypsy long terminal repeat retrotransposons, which extended the low-recombining pericentromeres and transformed large formerly euchromatic regions into repeat-rich pericentromeric regions. This reduced capacity for long terminal repeat retrotransposon silencing and removal in A. alpina co-occurs with unexpectedly low levels of DNA methylation. Most remarkably, the striking reduction of symmetrical CG and CHG methylation suggests weakened DNA methylation maintenance in A. alpina compared with Arabidopsis thaliana. Phylogenetic analyses indicate a highly dynamic evolution of some components of methylation maintenance machinery that might be related to the unique methylation in A. alpina.


Nature Communications | 2014

Endogenous florendoviruses are major components of plant genomes and hallmarks of virus evolution.

Andrew D. W. Geering; Florian Maumus; Dario Copetti; Nathalie Choisne; Derrick J. Zwickl; Matthias Zytnicki; Alistair R. McTaggart; Simone Scalabrin; Silvia Vezzulli; Rod A. Wing; Hadi Quesneville; Pierre Yves Teycheney

The extent and importance of endogenous viral elements have been extensively described in animals but are much less well understood in plants. Here we describe a new genus of Caulimoviridae called ‘Florendovirus’, members of which have colonized the genomes of a large diversity of flowering plants, sometimes at very high copy numbers (>0.5% total genome content). The genome invasion of Oryza is dated to over 1.8 million years ago (MYA) but phylogeographic evidence points to an even older age of 20–34 MYA for this virus group. Some appear to have had a bipartite genome organization, a unique characteristic among viral retroelements. In Vitis vinifera, 9% of the endogenous florendovirus loci are located within introns and therefore may influence host gene expression. The frequent colocation of endogenous florendovirus loci with TA simple sequence repeats, which are associated with chromosome fragility, suggests sequence capture during repair of double-stranded DNA breaks.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Distribution, evolution, and diversity of retrotransposons at the flamenco locus reflect the regulatory properties of piRNA clusters

Vanessa Zanni; Angéline Eymery; Michael Coiffet; Matthias Zytnicki; Isabelle Luyten; Hadi Quesneville; Chantal Vaury; Silke Jensen

Significance Control of transposable elements (TEs) by RNAi has a large impact on genome evolution in higher eucaryotes. In this paper, we study in detail a Piwi-interacting RNA (piRNA)-producing locus of Drosophila melanogaster, flamenco (flam), known to be responsible for the control of at least three retrotransposons by RNAi. We demonstrate the high structural dynamics of the flam locus resulting in loss and gain of TEs and establish a link between such structural variations and its ability to silence retrotransposons. We show that flam is a trap for TEs coming in by horizontal transfer from other Drosophila species. Overall, our data give unique insights into piRNA cluster regulatory properties, their role in evolution, and expansion and taming of TEs. Most of our understanding of Drosophila heterochromatin structure and evolution has come from the annotation of heterochromatin from the isogenic y; cn bw sp strain. However, almost nothing is known about the heterochromatin’s structural dynamics and evolution. Here, we focus on a 180-kb heterochromatic locus producing Piwi-interacting RNAs (piRNA cluster), the flamenco (flam) locus, known to be responsible for the control of at least three transposable elements (TEs). We report its detailed structure in three different Drosophila lines chosen according to their capacity to repress or not to repress the expression of two retrotransposons named ZAM and Idefix, and we show that they display high structural diversity. Numerous rearrangements due to homologous and nonhomologous recombination, deletions and segmental duplications, and loss and gain of TEs are diverse sources of active genomic variation at this locus. Notably, we evidence a correlation between the presence of ZAM and Idefix in this piRNA cluster and their silencing. They are absent from flam in the strain where they are derepressed. We show that, unexpectedly, more than half of the flam locus results from recent TE insertions and that most of the elements concerned are prone to horizontal transfer between species of the melanogaster subgroup. We build a model showing how such high and constant dynamics of a piRNA master locus open the way to continual emergence of new patterns of piRNA biogenesis leading to changes in the level of transposition control.


PLOS ONE | 2011

S-MART, A Software Toolbox to Aid RNA-seq Data Analysis

Matthias Zytnicki; Hadi Quesneville

High-throughput sequencing is now routinely performed in many experiments. But the analysis of the millions of sequences generated, is often beyond the expertise of the wet labs who have no personnel specializing in bioinformatics. Whereas several tools are now available to map high-throughput sequencing data on a genome, few of these can extract biological knowledge from the mapped reads. We have developed a toolbox called S-MART, which handles mapped RNA-Seq data. S-MART is an intuitive and lightweight tool which performs many of the tasks usually required for the analysis of mapped RNA-Seq reads. S-MART does not require any computer science background and thus can be used by all of the biologist community through a graphical interface. S-MART can run on any personal computer, yielding results within an hour even for Gb of data for most queries. S-MART may perform the entire analysis of the mapped reads, without any need for other ad hoc scripts. With this tool, biologists can easily perform most of the analyses on their computer for their RNA-Seq data, from the mapped data to the discovery of important loci.


Nucleic Acids Research | 2011

BlastR—fast and accurate database searches for non-coding RNAs

Giovanni Bussotti; Emanuele Raineri; Ionas Erb; Matthias Zytnicki; Andreas Wilm; Emmanuel Beaudoing; Philipp Bucher; Cedric Notredame

We present and validate BlastR, a method for efficiently and accurately searching non-coding RNAs. Our approach relies on the comparison of di-nucleotides using BlosumR, a new log-odd substitution matrix. In order to use BlosumR for comparison, we recoded RNA sequences into protein-like sequences. We then showed that BlosumR can be used along with the BlastP algorithm in order to search non-coding RNA sequences. Using Rfam as a gold standard, we benchmarked this approach and show BlastR to be more sensitive than BlastN. We also show that BlastR is both faster and more sensitive than BlastP used with a single nucleotide log-odd substitution matrix. BlastR, when used in combination with WU-BlastP, is about 5% more accurate than WU-BlastN and about 50 times slower. The approach shown here is equally effective when combined with the NCBI-Blast package. The software is an open source freeware available from www.tcoffee.org/blastr.html.


RNA Biology | 2013

RNA at 92 °C: The non-coding transcriptome of the hyperthermophilic archaeon Pyrococcus abyssi.

Claire Toffano-Nioche; Alban Ott; Estelle Crozat; An N. Nguyen; Matthias Zytnicki; Fabrice Leclerc; Patrick Forterre; Philippe Bouloc; Daniel Gautheret

The non-coding transcriptome of the hyperthermophilic archaeon Pyrococcus abyssi is investigated using the RNA-seq technology. A dedicated computational pipeline analyzes RNA-seq reads and prior genome annotation to identify small RNAs, untranslated regions of mRNAs, and cis-encoded antisense transcripts. Unlike other archaea, such as Sulfolobus and Halobacteriales, P. abyssi produces few leaderless mRNA transcripts. Antisense transcription is widespread (215 transcripts) and targets protein-coding genes that appear to evolve more rapidly than average genes. We identify at least three novel H/ACA-like guide RNAs among the newly characterized non-coding RNAs. Long 5′ UTRs in mRNAs of ribosomal proteins and amino-acid biosynthesis genes strongly suggest the presence of cis-regulatory leaders in these mRNAs. We selected a high-interest subset of non-coding RNAs based on their strong promoters, high GC-content, phylogenetic conservation, or abundance. Some of the novel small RNAs and long 5′ UTRs display high GC contents, suggesting unknown structural RNA functions. However, we were surprised to observe that most of the high-interest RNAs are AU-rich, which suggests an absence of stable secondary structure in the high-temperature environment of P. abyssi. Yet, these transcripts display other hallmarks of functionality, such as high expression or high conservation, which leads us to consider possible RNA functions that do not require extensive secondary structure.


PLOS Biology | 2015

Plants Encode a General siRNA Suppressor That Is Induced and Suppressed by Viruses

Nahid Shamandi; Matthias Zytnicki; Cyril Charbonnel; Emilie Elvira-Matelot; Aurore Bochnakian; Pascale Comella; Allison C. Mallory; Gersende Lepère; Julio Sáez-Vásquez; Hervé Vaucheret

Small RNAs play essential regulatory roles in genome stability, development, and responses to biotic and abiotic stresses in most eukaryotes. In plants, the RNaseIII enzyme DICER-LIKE1 (DCL1) produces miRNAs, whereas DCL2, DCL3, and DCL4 produce various size classes of siRNAs. Plants also encode RNASE THREE-LIKE (RTL) enzymes that lack DCL-specific domains and whose function is largely unknown. We found that virus infection induces RTL1 expression, suggesting that this enzyme could play a role in plant–virus interaction. To first investigate the biochemical activity of RTL1 independent of virus infection, small RNAs were sequenced from transgenic plants constitutively expressing RTL1. These plants lacked almost all DCL2-, DCL3-, and DCL4-dependent small RNAs, indicating that RTL1 is a general suppressor of plant siRNA pathways. In vivo and in vitro assays revealed that RTL1 prevents siRNA production by cleaving dsRNA prior to DCL2-, DCL3-, and DCL4-processing. The substrate of RTL1 cleavage is likely long-perfect (or near-perfect) dsRNA, consistent with the RTL1-insensitivity of miRNAs, which derive from DCL1-processing of short-imperfect dsRNA. Virus infection induces RTL1 mRNA accumulation, but viral proteins that suppress RNA silencing inhibit RTL1 activity, suggesting that RTL1 has evolved as an inducible antiviral defense that could target dsRNA intermediates of viral replication, but that a broad range of viruses counteract RTL1 using the same protein toolbox used to inhibit antiviral RNA silencing. Together, these results reveal yet another level of complexity in the evolutionary battle between viruses and plant defenses.

Collaboration


Dive into the Matthias Zytnicki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine Gaspin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Nathalie Choisne

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Simon de Givry

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Florian Maumus

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre-Yves Teycheney

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge