Matti Happonen
Tampere University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matti Happonen.
Environmental Science & Technology | 2012
Matti Happonen; Juha Heikkilä; Timo Murtonen; Kalle Lehto; Teemu Sarjovaara; Martti Larmi; Jorma Keskinen; Annele Virtanen
Hydrotreated vegetable oil (HVO) diesel fuel is a promising biofuel candidate that can complement or substitute traditional diesel fuel in engines. It has been already reported that by changing the fuel from conventional EN590 diesel to HVO decreases exhaust emissions. However, as the fuels have certain chemical and physical differences, it is clear that the full advantage of HVO cannot be realized unless the engine is optimized for the new fuel. In this article, we studied how much exhaust emissions can be reduced by adjusting engine parameters for HVO. The results indicate that, with all the studied loads (50%, 75%, and 100%), particulate mass and NO(x) can both be reduced over 25% by engine parameter adjustments. Further, the emission reduction was even higher when the target for adjusting engine parameters was to exclusively reduce either particulates or NO(x). In addition to particulate mass, different indicators of particulate emissions were also compared. These indicators included filter smoke number (FSN), total particle number, total particle surface area, and geometric mean diameter of the emitted particle size distribution. As a result of this comparison, a linear correlation between FSN and total particulate surface area at low FSN region was found.
Environmental Science & Technology | 2011
Tero Lähde; Topi Rönkkö; Matti Happonen; Christer Söderström; Annele Virtanen; Matti Kytö; Dieter Rothe; Jorma Keskinen
The effects of the fuel injection pressure on a heavy-duty diesel engine exhaust particle emissions were studied. Nonvolatile particle size distributions and gaseous emissions were measured at steady-state engine conditions while the fuel injection pressure was changed. An increase in the injection pressure resulted in an increase in the nonvolatile nucleation mode (core) emission at medium and at high loads. At low loads, the core was not detected. Simultaneously, a decrease in soot mode number concentration and size and an increase in the soot mode distribution width were detected at all loads. Interestingly, the emission of the core was independent of the soot mode concentration at load conditions below 50%. Depending on engine load conditions, growth of the geometric mean diameter of the core mode was also detected with increasing injection pressure. The core mode emission and also the size of the mode increased with increasing NOx emission while the soot mode size and emission decreased simultaneously.
Environmental Science & Technology | 2014
Panu Karjalainen; Topi Rönkkö; Liisa Pirjola; Juha Heikkilä; Matti Happonen; F. Arnold; Dieter Rothe; Piotr Bielaczyc; Jorma Keskinen
Sulfur driven diesel exhaust nucleation particle formation processes were studied in an aerosol laboratory, on engine dynamometers, and on the road. All test engines were equipped with a combination of a diesel oxidation catalyst (DOC) and a partial diesel particulate filter (pDPF). At steady operating conditions, the formation of semivolatile nucleation particles directly depended on SO2 conversion in the catalyst. The nucleation particle emission was most significant after a rapid increase in engine load and exhaust gas temperature. Results indicate that the nucleation particle formation at transient driving conditions does not require compounds such as hydrocarbons or sulfated hydrocarbons, however, it cannot be explained only by the nucleation of sulfuric acid. A real-world exhaust study with a heavy duty diesel truck showed that the nucleation particle formation occurs even with ultralow sulfur diesel fuel, even at downhill driving conditions, and that nucleation particles can contribute 60% of total particle number emissions. In general, due to sulfur storage and release within the exhaust aftertreatment systems and transients in driving, emissions of nucleation particles can even be the dominant part of modern diesel vehicle exhaust particulate number emissions.
Journal of The Air & Waste Management Association | 2012
Juha Heikkilä; Matti Happonen; Timo Murtonen; Kalle Lehto; Teemu Sarjovaara; Martti Larmi; Jorma Keskinen; Annele Virtanen
The effect of intake valve closure (IVC) timing by utilizing Miller cycle and start of injection (SOI) on particulate matter (PM), particle number, and nitrogen oxide (NOx) emissions was studied with a hydrotreated vegetable oil (HVO)-fueled nonroad diesel engine. HVO-fueled engine emissions, including aldehyde and polyaromatic hydrocarbon (PAH) emissions, were also compared with those emitted with fossil EN590 diesel fuel. At the engine standard settings, particle number and NOx emissions decreased at all the studied load points (50%, 75%, and 100%) when the fuel was changed from EN590 to HVO. Adjusting IVC timing enabled a substantial decrease in NOx emission and combined with SOI timing adjustment somewhat smaller decrease in both NOx and particle emissions at IVC −50 and −70 °CA points. The HVO fuel decreased PAH emissions mainly due to the absence of aromatics. Aldehyde emissions were lower with the HVO fuel with medium (50%) load. At higher loads (75% and 100%), aldehyde emissions were slightly higher with the HVO fuel. However, the aldehyde emission levels were quite low, so no clear conclusions on the effect of fuel can be made. Overall, the study indicates that paraffinic HVO fuels are suitable for emission reduction with valve and injection timing adjustment and thus provide possibilities for engine manufacturers to meet the strictening emission limits. Implications: NOx and particle emissions are dominant emissions of diesel engines and vehicles. New, biobased paraffinic fuels and modern engine technologies have been reported to lower both of these emissions. In this study, even further reductions were achieved with engine valve adjustment combined with novel hydrotreated vegetable oil (HVO) diesel fuel. This study shows that new paraffinic fuels offer further possibilities to reduce engine exhaust emissions to meet the future emission limits. Supplementary Materials: Supplementary materials are available for this paper. Go to the publishers online edition of the Journal of the Air & Waste Management Association for a complete list of analysed PAH compounds.
SAE International Journal of Fuels and Lubricants | 2012
Piotr Bielaczyc; Jorma Keskinen; Jakub Dzida; Rafał Sala; Topi Rönkkö; Toni Kinnunen; Pekka Matilainen; Panu Karjalainen; Matti Happonen
The aim of this paper is to analyse the quantitative impact of fuel sulphur content on particulate oxidation catalyst (POC) functionality, focusing on soot emission reduction and the ability to regenerate. Studies were conducted on fuels containing three different levels of sulphur, covering the range of 6 to 340 parts per million, for a light-duty application. The data presented in this paper provide further insights into the specific issues associated with usage of a POC with fuels of higher sulphur content. A 48-hour loading phase was performed for each fuel, during which filter smoke number, temperature and back-pressure were all observed to vary depending on the fuel sulphur level. The Fuel Sulphur Content (FSC) affected also soot particle size distributions (particle number and size) so that with FSC 6 ppm the soot particle concentration was lower than with FSC 65 and 340, both upstream and downstream of the POC. Conversely, FSC did not have major effects on the soot particle number reduction efficiency of the POC. Soot and other exhaust compounds accumulated within the POC during this phase, gradually built a pressure drop across the POC. The final mass of collected matter in the POC differed significantly according to the sulphur content. The efficiency of removal of gaseous pollutants by the POC was found to be markedly worse for the fuels with higher sulphur content, although this deterioration was observed to be non-linear. Following the accumulation phase, a duty cycle was applied that caused the POC to commence passive regeneration. The time taken for the POC to cleanse itself of accumulated matter and thereby eliminate the pressure drop was observed to increase with increasing fuel sulphur content. The proportion of NOx leaving the POC in the form of NO2 was also found to vary as a strong function of fuel sulphur content.
Environmental Science & Technology | 2013
Matti Happonen; Fanni Mylläri; Panu Karjalainen; Anna Frey; Sanna Saarikoski; Samara Carbone; Risto Hillamo; Liisa Pirjola; Anna Häyrinen; Jorma Kytömäki; Jarkko V. Niemi; Jorma Keskinen; Topi Rönkkö
Heavy fuel oil (HFO) is a commonly used fuel in industrial heating and power generation and for large marine vessels. In this study, the fine particle emissions of a 47 MW oil-fired boiler were studied at 30 MW power and with three different fuels. The studied fuels were HFO, water emulsion of HFO, and water emulsion of HFO mixed with light fuel oil (LFO). With all the fuels, the boiler emitted considerable amounts of particles smaller than 200 nm in diameter. Further, these small particles were quite hygroscopic even as fresh and, in the case of HFO+LFO emulsion, the hygroscopic growth of the particles was dependent on particle size. The use of emulsions and the addition of LFO to the fuel had a reducing effect on the hygroscopic growth of particles. The use of emulsions lowered the sulfate content of the smallest particles but did not affect significantly the sulfate content of particles larger than 42 nm and, further, the addition of LFO considerably increased the black carbon content of particulate matter. The results indicate that even the fine particles emitted from HFO based combustion can have a significant effect on cloud formation, visibility, and air quality.
Journal of The Air & Waste Management Association | 2014
Tero Lähde; Annele Virtanen; Matti Happonen; Christer Söderström; Matti Kytö; Jorma Keskinen
Exhaust gas particle and ion size distributions were measured from an off-road diesel engine complying with the European Stage IIIB emission standard. The measurements were performed at idling and low load conditions on an engine dynamometer. Nucleation-mode particles dominated the diesel exhaust particle number emissions at idle load. The nonvolatile nucleation-mode geometric mean diameter was detected at 10 nm or below. The nonvolatile nucleation-mode charge state implied that it has evolved through a highly ionizing environment before emission from the engine. The determined charging probabilities were 10.0 ± 2.2% for negative and 8.0 ± 2.0% for positive polarity particles. The nonvolatile nucleation particle concentration and size was also shown to be dependent on the lubricant oil composition. The particle emissions were efficiently controlled with a partial filter or with partial filter + selective catalytic reduction (SCR) combination. The particle number removal efficiencies of the aftertreatment systems were over 95% for wet total particle number (>3nm) and over 85% for dry particle total number. Nevertheless, the aftertreatment systems’ efficiencies were around 50% for the soot-mode particles. The low-load nonvolatile nucleation particle emissions were also dependent on the engine load, speed, and fuel injection pressure. The low load particle number emissions followed the soot-core trade-off, similar to medium or high operating loads. Implications: Idling and low-load diesel engine exhaust emissions affect harmfully the ambient air quality. The low-load particle number emissions are here shown to peak in the 10-nm size range for a modern off-road engine. The particles are electrically charged and nonvolatile and they originate from the combustion process. Tailpipe particle control by open channel filter can remove more than 85% of the nonvolatile 10-nm particles and about 50% of the soot-mode particles, while the fuel injection pressure increase can lead to particle number increase. The study provides a new viewpoint for low-load particle emissions and control.
Fuel | 2010
Matti Happonen; Tero Lähde; Maria Messing; Teemu Sarjovaara; Martti Larmi; L. Reine Wallenberg; Annele Virtanen; Jorma Keskinen
Fuel | 2013
Matti Happonen; Juha Heikkilä; Päivi Aakko-Saksa; Timo Murtonen; Kalle Lehto; Antti Rostedt; Teemu Sarjovaara; Martti Larmi; Jorma Keskinen; Annele Virtanen
SAE 2012 International Powertrains, Fuels & Lubricants Meeting | 2012
Timo Murtonen; Päivi Aakko-Saksa; Päivi Koponen; Kalle Lehto; Teemu Sarjovaara; Matti Happonen; Juha Heikkilä