Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matti Siika-aho is active.

Publication


Featured researches published by Matti Siika-aho.


Advances in Biochemical Engineering \/ Biotechnology | 2007

Thermostable Enzymes in Lignocellulose Hydrolysis

Liisa Viikari; Marika Alapuranen; Terhi Puranen; Jari Vehmaanperä; Matti Siika-aho

Thermostable enzymes offer potential benefits in the hydrolysis of lignocellulosic substrates; higher specific activity decreasing the amount of enzymes, enhanced stability allowing improved hydrolysis performance and increased flexibility with respect to process configurations, all leading to improvement of the overall economy of the process. New thermostable cellulase mixtures were composed of cloned fungal enzymes for hydrolysis experiments. Three thermostable cellulases, identified as the most promising enzymes in their categories (cellobiohydrolase, endoglucanase and beta-glucosidase), were cloned and produced in Trichoderma reesei and mixed to compose a novel mixture of thermostable cellulases. Thermostable xylanase was added to enzyme preparations used on substrates containing residual hemicellulose. The new optimised thermostable enzyme mixtures were evaluated in high temperature hydrolysis experiments on technical steam pretreated raw materials: spruce and corn stover. The hydrolysis temperature could be increased by about 10-15 degrees C, as compared with present commercial Trichoderma enzymes. The same degree of hydrolysis, about 90% of theoretical, measured as individual sugars, could be obtained with the thermostable enzymes at 60 degrees C as with the commercial enzymes at 45 degrees C. Clearly more efficient hydrolysis per assayed FPU unit or per amount of cellobiohydrolase I protein used was obtained. The maximum FPU activity of the novel enzyme mixture was about 25% higher at the optimum temperature at 65 degrees C, as compared with the highest activity of the commercial reference enzyme at 60 degrees C. The results provide a promising basis to produce and formulate improved enzyme products. These products can have high temperature stability in process conditions in the range of 55-60 degrees C (with present industrial products at 45-50 degrees C) and clearly improved specific activity, essentially decreasing the protein dosage required for an efficient hydrolysis of lignocellulosic substrates. New types of process configurations based on thermostable enzymes are discussed.


Journal of Biotechnology | 1993

Purification and characterization of two β-mannanases from Trichoderma reesei

Henrik Stålbrand; Matti Siika-aho; Maija Tenkanen; Liisa Viikari

Five enzymes with mannanase activity were separated from Trichoderma reesei culture filtrate using analytical isoelectric focusing and subsequently detected with the zymogram technique. The crude enzymes had isoelectric points in the range of 3.6–6.5. Two of the mannanases with pI values of 4.6 and 5.4 were purified using ion-exchange chromatography, affinity chromatography and chromatofocusing. The molecular weights determined with SDS-PAGE were 51 000 (mannanase pI 4.6) and 53 000 (mannanase pI 5.4). The two enzymes had similar properties with respect to pH optimae and pH stabilities. Both mannanases hydrolyzed ivory nut mannan mainly to mannotriose and mannobiose. The specific activities (against locust bean gum) of the purified enzymes were 1860 and 1430 nkat mg−1 for the pI 4.6 and pI 5.4 mannanases, respectively.


Cellulose | 2000

Trichoderma reesei cellulases and their core domains in the hydrolysis and modification of chemical pulp

Anna Suurnäkki; Maija Tenkanen; Matti Siika-aho; M.-L. Niku-Paavola; Liisa Viikari; Johanna Buchert

The action of monocomponent Trichoderma reesei endoglucanases (EG I, EG II; EC 3.2.1.4) and cellobiohydrolases (CBH I, CBH II; EC 3.2.1.91) and their core proteins was compared using isolated celluloses and bleached chemical pulp. The presence of cellulose binding domain (CBD) in the intact enzymes did not affect their action against soluble substrates. In the case of insoluble isolated celluloses and the chemical pulp the presence of CBD enhanced the enzymatic hydrolysis of cellulose. The effect of CBD was more pronounced in the cellobiohydrolases, hydrolysing mainly crystalline cellulose, than in the endoglucanases which were more efficient in hydrolysing amorphous cellulose. The pulp properties measured, that is, viscosity and strength after PFI refining, were equally affected by the treatment with intact enzymes and corresponding core proteins, suggesting that the presence of CBD in intact cellulases affects mainly the cellulose hydrolysis level and less the mode of action of T. reesei cellulases in pulp. The better beatability of the bleached chemical pulp treated with intact endoglucanases than that treated with the corresponding core proteins suggests that the presence of CBD in endoglucanases could, however, result in beneficial effects on pulp properties.


Journal of Biotechnology | 2000

An α-glucuronidase of Schizophyllum commune acting on polymeric xylan

Maija Tenkanen; Matti Siika-aho

The main α-glucuronidase (EC 3.2.1.131) of the fungus Schizophyllum commune was purified to homogeneity using standard chromatographic methods; anion exchange, hydrophobic interaction chromatography and gel filtration. The enzyme had a molecular mass of 125 kDa as determined by SDS-polyacrylamide gel electrophoresis and a pI value of 3.6 according to isoelectric focusing. The N-terminal amino acid sequence of the S. commune α-glucuronidase did not show any homology with other α-glucuronidases. It exhibited maximal activity at pH values from 4.5 to 5.5 and was stable for 24 h between pH 6 and 8 at 40°C. The highest temperature at which the enzyme retained its full activity for 24 h at pH 5.8 was 40°C. The α-glucuronidase of S. commune was able to remove almost all 4-O-methylglucuronic acid groups from water-soluble polymeric softwood arabinoglucuronoxylans. The action of the enzyme on birchwood acetyl-glucuronoxylan was limited due to the high amount of acetyl substituents. The degree of hydrolysis of partially soluble deacetylated glucuronoxylan did not exceed 50% of the theoretical maximum. However, together with a xylanase hydrolysing the xylan backbone the action of the α-glucuronidase of S. commune on glucuronoxylan was clearly enhanced. It was apparent that the enzyme was able to remove the 4-O-methylglucuronic groups mainly from soluble substrates.


Bioresource Technology | 2011

Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood.

Anikó Várnai; Laura Huikko; Jaakko Pere; Matti Siika-aho; Liisa Viikari

The impact of xylan and glucomannan hydrolysis on cellulose hydrolysis was studied on five pretreated softwood substrates with different xylan and glucomannan contents, both varying from 0.2% to 6.9%, using mixtures of purified enzymes. The supplementation of pure cellulase mixture with non-specific endoglucanase TrCel7B and xylanase TrXyn11 enhanced the hydrolysis of all substrates, except the steam pretreated spruce, by more than 50%. The addition of endo-β-mannanase increased the overall hydrolysis yield by 20-25%, liberating significantly more glucose than theoretically present in glucomannan. When supplemented together, xylanolytic and mannanolytic enzymes acted synergistically with cellulases. Moreover, a linear correlation was observed between the hydrolysis of polysaccharides, irrespective of the composition, indicating that glucomannan and xylan form a complex network of polysaccharides around the cellulosic fibres extending throughout the lignocellulosic matrix. Both hemicellulolytic enzymes are crucial as accessory enzymes when designing efficient mixtures for the total hydrolysis of lignocellulosic substrates containing both hemicelluloses.


Biotechnology for Biofuels | 2011

High level secretion of cellobiohydrolases by Saccharomyces cerevisiae

Marja Ilmen; Riaan den Haan; Elena E. Brevnova; John L. McBride; Erin Wiswall; Allan Froehlich; Anu Koivula; Sanni P. Voutilainen; Matti Siika-aho; Daniel C. la Grange; Naomi Thorngren; Simon Ahlgren; Mark Mellon; Kristen Deleault; Vineet Rajgarhia; Willem H. van Zyl; Merja Penttilä

BackgroundThe main technological impediment to widespread utilization of lignocellulose for the production of fuels and chemicals is the lack of low-cost technologies to overcome its recalcitrance. Organisms that hydrolyze lignocellulose and produce a valuable product such as ethanol at a high rate and titer could significantly reduce the costs of biomass conversion technologies, and will allow separate conversion steps to be combined in a consolidated bioprocess (CBP). Development of Saccharomyces cerevisiae for CBP requires the high level secretion of cellulases, particularly cellobiohydrolases.ResultsWe expressed various cellobiohydrolases to identify enzymes that were efficiently secreted by S. cerevisiae. For enhanced cellulose hydrolysis, we engineered bimodular derivatives of a well secreted enzyme that naturally lacks the carbohydrate-binding module, and constructed strains expressing combinations of cbh1 and cbh2 genes. Though there was significant variability in the enzyme levels produced, up to approximately 0.3 g/L CBH1 and approximately 1 g/L CBH2 could be produced in high cell density fermentations. Furthermore, we could show activation of the unfolded protein response as a result of cellobiohydrolase production. Finally, we report fermentation of microcrystalline cellulose (Avicel™) to ethanol by CBH-producing S. cerevisiae strains with the addition of beta-glucosidase.ConclusionsGene or protein specific features and compatibility with the host are important for efficient cellobiohydrolase secretion in yeast. The present work demonstrated that production of both CBH1 and CBH2 could be improved to levels where the barrier to CBH sufficiency in the hydrolysis of cellulose was overcome.


Biotechnology for Biofuels | 2011

The role of acetyl xylan esterase in the solubilization of xylan and enzymatic hydrolysis of wheat straw and giant reed

Junhua Zhang; Matti Siika-aho; Maija Tenkanen; Liisa Viikari

BackgroundDue to the complexity of lignocellulosic materials, a complete enzymatic hydrolysis into fermentable sugars requires a variety of cellulolytic and xylanolytic enzymes. Addition of xylanases has been shown to significantly improve the performance of cellulases and to increase cellulose hydrolysis by solubilizing xylans in lignocellulosic materials. The goal of this work was to investigate the effect of acetyl xylan esterase (AXE) originating from Trichoderma reesei on xylan solubilization and enzymatic hydrolysis of cellulose.ResultsThe solubilization of xylan in pretreated wheat straw and giant reed (Arundo donax) by xylanolytic enzymes and the impact of the sequential or simultaneous solubilization of xylan on the hydrolysis of cellulose by purified enzymes were investigated. The results showed that the removal of acetyl groups in xylan by AXE increased the accessibility of xylan to xylanase and improved the hydrolysis of xylan in pretreated wheat straw and giant reed. Solubilization of xylan led to an increased accessibility of cellulose to cellulases and thereby increased the hydrolysis extent of cellulose. A clear synergistic effect between cellulases and xylanolytic enzymes was observed. The highest hydrolysis yield of cellulose was obtained with a simultaneous use of cellulases, xylanase and AXE, indicating the presence of acetylated xylan within the cellulose matrix. Acetylated xylobiose and acetylated xylotriose were produced from xylan without AXE, as confirmed by atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry.ConclusionsThe results in this paper demonstrate that supplementation of xylanase with AXE enhances the solubilization of xylan to some extent and, consequently, increases the subsequent hydrolysis of cellulose. The highest hydrolysis yield was, however, obtained by simultaneous hydrolysis of xylan and cellulose, indicating a layered structure of cellulose and xylan chains in the cell wall substrate. AXE has an important role in the hydrolysis of lignocellulosic materials containing acetylated xylan.


Biotechnology and Bioengineering | 2008

Cloning, expression, and characterization of novel thermostable family 7 cellobiohydrolases

Sanni P. Voutilainen; Terhi Puranen; Matti Siika-aho; Arja Lappalainen; Marika Alapuranen; Jarno Kallio; Satu Hooman; Liisa Viikari; Jari Vehmaanperä; Anu Koivula

As part of the effort to find better cellulases for bioethanol production processes, we were looking for novel GH‐7 family cellobiohydrolases, which would be particularly active on insoluble polymeric substrates and participate in the rate‐limiting step in the hydrolysis of cellulose. The enzymatic properties were studied and are reported here for family 7 cellobiohydrolases from the thermophilic fungi Acremonium thermophilum, Thermoascus aurantiacus, and Chaetomium thermophilum. The Trichoderma reesei Cel7A enzyme was used as a reference in the experiments. As the native T. aurantiacus Cel7A has no carbohydrate‐binding module (CBM), recombinant proteins having the CBM from either the C. thermophilum Cel7A or the T. reesei Cel7A were also constructed. All these novel acidic cellobiohydrolases were more thermostable (by 4–10°C) and more active (two‐ to fourfold) in hydrolysis of microcrystalline cellulose (Avicel) at 45°C than T. reesei Cel7A. The C. thermophilum Cel7A showed the highest specific activity and temperature optimum when measured on soluble substrates. The most effective enzyme for Avicel hydrolysis at 70°C, however, was the 2‐module version of the T. aurantiacus Cel7A, which was also relatively weakly inhibited by cellobiose. These results are discussed from the structural point of view based on the three‐dimensional homology models of these enzymes. Biotechnol. Bioeng. 2008;101: 515–528.


Acta Crystallographica Section D-biological Crystallography | 2000

The Three-Dimensional Structure of a Trichoderma Reesei Beta-Mannanase from Glycoside Hydrolase Family 5

Elisabetta Sabini; Heidi L. Schubert; Garib N. Murshudov; Keith S. Wilson; Matti Siika-aho; Merja Penttilä

The crystal structure of the catalytic core domain of beta-mannanase from the fungus Trichoderma reesei has been determined at a resolution of 1.5 A. The structure was solved using the anomalous scattering from a single non-isomorphous platinum complex with two heavy-metal sites in space group P2(1). The map computed with the experimental phases was enhanced by the application of an automated model building and refinement procedure using the amplitudes and experimental phases as observations. This approach is expected to be of more general application. The structure of the native enzyme and complexes with Tris-HCl and mannobiose are also reported: the mannobiose binds in subsites +1 and +2. The structure is briefly compared with that of the homologous beta-mannanase from the bacterium Thermomonospora fusca.


Cellulose | 1996

Modification of hardwood dissolving pulp with purifiedTrichoderma reesei cellulases

Leena Rahkamo; Matti Siika-aho; Marianna Vehviläinen; Matti Dolk; Liisa Viikari; Pertti Nousiainen; Johanna Buchert

Hardwood dissolving pulp was treated with purifiedTrichoderma reeseiendoglucanases and cellobiohydrolases. Endoglucanases were more efficient in hydrolysing pulp carbohydrates than were the cellobiohydrolases at the same protein dosage. Endoglucanases also lowered the viscosity and improved the alkaline solubility more dramatically. There was a clear correlation between the alkaline solubility and viscosity, and therefore the solubility could only be improved by lowering the viscosity of the pulp. At the same degree of cellulose degradation, endoglucanase II was found to be most effective in reducing the viscosity and thus improving the solubility. Cellobiohydrolases had a less pronounced effect on the viscosity or solubility.

Collaboration


Dive into the Matti Siika-aho's collaboration.

Top Co-Authors

Avatar

Maija Tenkanen

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Johanna Buchert

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Merja Penttilä

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Jaana Uusitalo

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Anne Kallioinen

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Jaakko Pere

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Anita Teleman

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Michael Bailey

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge