Matti Tillander
Philips
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matti Tillander.
Medical Physics | 2012
Charles Mougenot; Matti Tillander; Julius Koskela; Max O. Köhler; Chrit Moonen; Mario Ries
PURPOSE The risk of undesired tissue damage to thoracic cage, heart, and lung during MR guided HIFU ablations of breast cancer can be greatly reduced if a phased array transducer design with a lateral beam direction is used in combination with a large aperture. The disadvantage is an increased sensitivity to focus aberrations due to tissue heterogeneity. Here, the authors propose to restore the focal coherence by using a matched aperture phase correction, which is based on a noninvasively obtained tissue model. METHODS The method combines high resolution MRI with ultrasound wave measurements of different tissue types to determine a phase correction, which compensates focal point aberrations caused by tissue heterogeneity. 3D segmentation of tissue is used to quantify the relative proportion of each tissue type along a line running from the center of each element of the phased array to the target focal point. RESULTS For tissue types with a celerity difference of 3%, the proposed method allows to quantify the phase aberration with an accuracy of 6° ± 20° and a correlation factor R(2) = 0.95. Using the refocusing method for a complex heterogeneous phantom resulted in 95% of the maximal pressure, whereas only 70% of the maximal pressure is obtained in absence of any phase correction. CONCLUSIONS Since the proposed refocusing algorithm is compatible with a standard interventional preplanning and requires only a minimal amount of processing, it presents a promising approach to compensate for aberration in heterogeneous tissues such as the human breast.
Medical Physics | 2012
Ari Partanen; Matti Tillander; Pavel S. Yarmolenko; Bradford J. Wood; Matthew R. Dreher; Max O. Köhler
PURPOSE Ablative hyperthermia (>55 °C) has been used as a definitive treatment for accessible solid tumors not amenable to surgery, whereas mild hyperthermia (40-45 °C) has been shown effective as an adjuvant for both radiotherapy and chemotherapy. An optimal mild hyperthermia treatment is spatially accurate, with precise and homogeneous heating limited to the target region while also limiting the likelihood of unwanted thermal or mechanical bioeffects (tissue damage, vascular shutoff). Magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) can noninvasively heat solid tumors under image-guidance. In a mild hyperthermia setting, a sonication approach utilizing multiple concurrent foci may provide the benefit of reducing acoustic pressure in the focal region (leading to reduced or no mechanical effects), while providing better control over the heating. The objective of this study was to design, implement, and characterize a multifoci sonication approach in combination with a mild hyperthermia heating algorithm, and compare it to the more conventional method of electronically sweeping a single focus. METHODS Simulations (acoustic and thermal) and measurements (acoustic, with needle hydrophone) were performed. In addition, heating performance of multifoci and single focus sonications was compared using a clinical MR-HIFU platform in a phantom (target = 4-16 mm), in normal rabbit thigh muscle (target = 8 mm), and in a Vx2 tumor (target = 8 mm). A binary control algorithm was used for real-time mild hyperthermia feedback control (target range = 40.5-41 °C). Data were analyzed for peak acoustic pressure and intensity, heating energy efficiency, temperature accuracy (mean), homogeneity of heating (standard deviation [SD], T10 and T90), diameter and length of the heated region, and thermal dose (CEM(43)). RESULTS Compared to the single focus approach, multifoci sonications showed significantly lower (67% reduction) peak acoustic pressures in simulations and hydrophone measurements. In a rabbit Vx2 tumor, both single focus and multifoci heating approaches were accurate (mean = 40.82±0.12 °C [single] and 40.70±0.09 °C [multi]) and precise (standard deviation = 0.65±0.05 °C [single] and 0.64±0.04 °C [multi]), producing homogeneous heating (T(10-90) = 1.62 °C [single] and 1.41 °C [multi]). Heated regions were significantly shorter in the beam path direction (35% reduction, p < 0.05, Tukey) for multifoci sonications, i.e., resulting in an aspect ratio closer to one. Energy efficiency was lower for the multifoci approach. Similar results were achieved in phantom and rabbit muscle heating experiments. CONCLUSIONS A multifoci sonication approach was combined with a mild hyperthermia heating algorithm, and implemented on a clinical MR-HIFU platform. This approach resulted in accurate and precise heating within the targeted region with significantly lower acoustic pressures and spatially more confined heating in the beam path direction compared to the single focus sonication method.The reduction in acoustic pressure and improvement in spatial control suggest that multifoci heating is a useful tool in mild hyperthermia applications for clinical oncology.
Medical Physics | 2016
Matti Tillander; Steffen Hokland; Julius Koskela; Høgni Dam; Niels Peter Andersen; Michael Pedersen; Kari Tanderup; Mika Petri Ylihautala; Max O. Köhler
PURPOSE Mild hyperthermia can be used as an adjuvant therapy to enhance radiation therapy or chemotherapy of cancer. However, administering mild hyperthermia is technically challenging due to the high accuracy required of the temperature control. MR guided high-intensity focused ultrasound (MR-HIFU) is a technology that can address this challenge. In this work, accurate and spatially uniform mild hyperthermia is demonstrated for deep-seated clinically relevant heating volumes using a HIFU system under MR guidance. METHODS Mild hyperthermia heating was evaluated for temperature accuracy and spatial uniformity in 11 in vivo porcine leg experiments. Hyperthermia was induced with a commercial Philips Sonalleve MR-HIFU system embedded in a 1.5T Ingenia MR scanner. The operating software was modified to allow extended duration mild hyperthermia. Heating time varied from 10 min up to 60 min and the assigned target temperature was 42.5 °C. Electronic focal point steering, mechanical transducer movement, and dynamic transducer element switch-off were exploited to enlarge the heated volume and obtain uniform heating throughout the acoustic beam path. Multiple temperature mapping images were used to control and monitor the heating. The magnetic field drift and transducer susceptibility artifacts were compensated to enable accurate volumetric MR thermometry. RESULTS The obtained mean temperature for the target area (the cross sectional area of the heated volume at focal depth primarily used to control the heating) was on average 42.0 ± 0.6 °C. Temperature uniformity in the target area was evaluated using T10 and T90, which were 43.1 ± 0.6 and 40.9 ± 0.6 °C, respectively. For the near field, the corresponding temperatures were 39.3 ± 0.8 °C (average), 40.6 ± 1.0 °C (T10), and 38.0 ± 0.9 °C (T90). The sonications resulted in a concise heating volume, typically in the shape of a truncated cone. The average depth reached from the skin was 86.9 mm. The results show that the heating algorithm was able to induce deep heating while keeping the near-field temperature uniform and at a safe level. CONCLUSIONS The capability of MR-HIFU to induce accurate, spatially uniform, and robust mild hyperthermia in large deep-seated volumes was successfully demonstrated through a series of in vivo animal experiments.
International Journal of Hyperthermia | 2016
Chenchen Bing; Robert Staruch; Matti Tillander; Max O. Köhler; Charles Mougenot; Mika Petri Ylihautala; Theodore W. Laetsch; Rajiv Chopra
Abstract There is growing interest in performing hyperthermia treatments with clinical magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) therapy systems designed for tissue ablation. During hyperthermia treatment, however, due to the narrow therapeutic window (41–45 °C), careful evaluation of the accuracy of proton resonant frequency (PRF) shift MR thermometry for these types of exposures is required. Purpose: The purpose of this study was to evaluate the accuracy of MR thermometry using a clinical MR-HIFU system equipped with a hyperthermia treatment algorithm. Methods: Mild heating was performed in a tissue-mimicking phantom with implanted temperature sensors using the clinical MR-HIFU system. The influence of image-acquisition settings and post-acquisition correction algorithms on the accuracy of temperature measurements was investigated. The ability to achieve uniform heating for up to 40 min was evaluated in rabbit experiments. Results: Automatic centre-frequency adjustments prior to image-acquisition corrected the image-shifts in the order of 0.1 mm/min. Zero- and first-order phase variations were observed over time, supporting the use of a combined drift correction algorithm. The temperature accuracy achieved using both centre-frequency adjustment and the combined drift correction algorithm was 0.57° ± 0.58 °C in the heated region and 0.54° ± 0.42 °C in the unheated region. Conclusion: Accurate temperature monitoring of hyperthermia exposures using PRF shift MR thermometry is possible through careful implementation of image-acquisition settings and drift correction algorithms. For the evaluated clinical MR-HIFU system, centre-frequency adjustment eliminated image shifts, and a combined drift correction algorithm achieved temperature measurements with an acceptable accuracy for monitoring and controlling hyperthermia exposures.
Journal of therapeutic ultrasound | 2014
Matti Tillander; Steffen Hokland
Background Mild hyperthermia (41.5-44°C) has been shown to enhance the effect of radiotherapy and chemotherapy. However, currently available heating methods are often inefficient in inducing conformal hyperthermia for deep seated targets. Here, the software of Philips Sonalleve V2 MR-HIFU system was modified to enable performing a long duration large volume hyperthermia sonication in in-vivo porcine thigh muscle.
12TH INTERNATIONAL SYMPOSIUM ON THERAPEUTIC ULTRASOUND | 2012
Matti Tillander; Max O. Köhler; Julius Koskela; Mika Petri Ylihautala
The relation between rib bone heating during HIFU therapy and incident intensity on the bone surface was examined using an experimental setup and simulations with ray-tracer. The relation was found to be linear yet the data had large variance. The result was successfully applied to an intensity-based beam-shaping algorithm, which was fast enough for online therapy planning, and used to protect the ribs from overheating during intercostal sonications to a HIFU phantom containing two porcine rib bones.
Archive | 2015
Art Ikka Mikael Partanen; Matti Tillander; Matthew Robert Dreher; Max O. Köhler
International Journal of Radiation Oncology Biology Physics | 2016
W. Chu; Robert Staruch; Samuel Pichardo; Matti Tillander; Max O. Köhler; Yuexi Huang; Mika Petri Ylihautala; Merrylee McGuffin; Gregory J. Czarnota; Kullervo Hynynen
Archive | 2012
Matti Tillander; Max O. Köhler; Shunmugavelu Sokka
Archive | 2017
Matti Tillander