Robert Staruch
Philips
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert Staruch.
International Journal of Hyperthermia | 2011
Robert Staruch; Rajiv Chopra; Kullervo Hynynen
Purpose: Thermosensitive liposomes provide a mechanism for triggering the local release of anticancer drugs, but this technology requires precise temperature control in targeted regions with minimal heating of surrounding tissue. The objective of this study was to evaluate the feasibility of using MRI-controlled focused ultrasound (FUS) and thermosensitive liposomes to achieve thermally mediated localised drug delivery in vivo. Materials and methods: Results are reported from ten rabbits, where a FUS beam was scanned in a circular trajectory to heat 10–15 mm diameter regions in normal thigh to 43°C for 20–30 min. MRI thermometry was used for closed-loop feedback control to achieve temporally and spatially uniform heating. Lyso-thermosensitive liposomal doxorubicin was infused intravenously during hyperthermia. Unabsorbed liposomes were flushed from the vasculature by saline perfusion 2 h later, and tissue samples were harvested from heated and unheated thigh regions. The fluorescence intensity of the homogenised samples was used to calculate the concentration of doxorubicin in tissue. Results: Closed-loop control of FUS heating using MRI thermometry achieved temperature distributions with mean, T90 and T10 of 42.9°C, 41.0°C and 44.8°C, respectively, over a period of 20 min. Doxorubicin concentrations were significantly higher in tissues sampled from heated than unheated regions of normal thigh muscle (8.3 versus 0.5 ng/mg, mean per-animal difference = 7.8 ng/mg, P < 0.05, Wilcoxon matched pairs signed rank test). Conclusions: The results show the potential of MRI-controlled focused ultrasound hyperthermia for enhanced local drug delivery with temperature-sensitive drug carriers.
Medical Physics | 2009
Rajiv Chopra; Laura Curiel; Robert Staruch; Laetitia Morrison; Kullervo Hynynen
The development of novel MRI-guided therapeutic ultrasound methods including potentiated drug delivery and targeted thermal ablation requires extensive testing in small animals such as rats and mice due to the widespread use of these species as models of disease. An MRI-compatible, computer-controlled three-axis positioning system was constructed to deliver focused ultrasound exposures precisely to a target anatomy in small animals for high-throughput preclinical drug delivery studies. Each axis was constructed from custom-made nonmagnetic linear ball stages driven by piezoelectric actuators and optical encoders. A range of motion of 5 x 5 x 2.5 cm3 was achieved, and initial bench top characterization demonstrated the ability to deliver ultrasound to the brain with a spatial accuracy of 0.3 mm. Operation of the positioning system within the bore of a clinical 3 T MR imager was feasible, and simultaneous motion and MR imaging did not result in any mutual interference. The system was evaluated in its ability to deliver precise sonications within the mouse brain, linear scanned exposures in a rat brain for blood barrier disruption, and circular scans for controlled heating under MR temperature feedback. Initial results suggest that this is a robust and precise apparatus for use in the investigation of novel ultrasound-based therapeutic strategies in small animal preclinical models.
International Journal of Hyperthermia | 2012
Robert Staruch; Milan Ganguly; Ian F. Tannock; Kullervo Hynynen; Rajiv Chopra
Purpose: The efficacy of anticancer drugs in solid tumours is impaired by their inability to reach all cancer cells in sufficient concentration to cause cytotoxicity. Hyperthermia-triggered release of drugs from thermosensitive liposomes can increase tumour drug concentration, but tumour-specific drug delivery requires precise temperature control, and effects on microregional distribution of anticancer drugs in tumours are unknown. Here we evaluate thermally triggered release of doxorubicin in a rabbit tumour model by comparing free versus thermosensitive liposomal doxorubicin administered systemically during magnetic resonance imaging (MRI)-controlled focused ultrasound hyperthermia. Materials and methods: Twelve rabbits with a transplanted VX2 tumour in each thigh had a 10 mm diameter region in one tumour heated to 43°C using focused ultrasound with temperature control by MRI thermometry. Delivery of doxorubicin to tumours and normal tissues was quantified by fluorescence in tissue homogenates, and by fluorescence microscopy. Results: Using thermosensitive liposomal doxorubicin (2.5 mg/kg), doxorubicin concentrations in heated tumours were 26.7 times higher than in unheated tumours (n = 7, p = 0.017, two-sided Wilcoxon signed-rank test). There was no significant enhancement with free doxorubicin in heated versus unheated tumours (n = 3, p = 0.5). With thermosensitive liposomes (8.3 mg/kg), fluorescence microscopy demonstrated increased doxorubicin fluorescence in heated versus unheated tumours, co-localised with nuclear staining throughout the tumour. Conclusions: Localised image-guided delivery of high concentrations of doxorubicin to cancer cells was achieved non-invasively in implanted tumours with temperature-sensitive drug carriers and a preclinical MRI-controlled focused ultrasound hyperthermia system.
International Journal of Hyperthermia | 2015
Matthew A. Lewis; Robert Staruch; Rajiv Chopra
Abstract In this review we present the current status of ultrasound thermometry and ablation monitoring, with emphasis on the diverse approaches published in the literature and with an eye on which methods are closest to clinical reality. It is hoped that this review will serve as a guide to the expansion of sonographic methods for treatment monitoring and thermometry since the last brief review in 2007.
International Journal of Hyperthermia | 2015
Robert Staruch; Kullervo Hynynen; Rajiv Chopra
Abstract Purpose: The aim of this study was to determine whether localised drug release using thermosensitive liposomal doxorubicin (TLD) and mild hyperthermia produced by a clinical magnetic resonance high intensity focused ultrasound (MR-HIFU) system improves anti-tumour efficacy over TLD alone in rabbit Vx2 tumours. Materials and methods: Rabbits bearing one Vx2 thigh tumour (n = 6 per group) were administered TLD (1.67 mg/kg) either with or without MR-HIFU mild hyperthermia (20 min, 42.0 °C). Tumour progression was measured using contrast-enhanced T1-weighted MR imaging. Toxicity was evaluated by changes in body weight, blood counts, and blood chemistry. Tumour volume, body weight, and blood data were acquired weekly for the first month and biweekly thereafter. Results: Rabbits treated with TLD plus MR-HIFU mild hyperthermia had target region temperatures with spatial-median, temporal-mean of 41.4° ± 0.6 °C; 10th and 90th percentile temperatures were 40.2 and 42.7 °C. All six rabbits that received TLD alone had rapid tumour progression and reached the tumour size end point (maximum dimension >6 cm) within 24 days. Four of six rabbits treated with TLD plus MR-HIFU mild hyperthermia survived to the study end point of 60 days; one reached tumour size end point, one had hyperthermia-related toxicity, all had at least a transient decrease in tumour volume. Weekly body weight, complete blood counts, and blood chemistry did not reveal additional evidence of drug or hyperthermia-related toxicity. Conclusions: Rabbit Vx2 tumours treated with a single infusion of TLD during MR-HIFU mild hyperthermia had reduced tumour growth vs. tumours treated with TLD alone. These findings are an important step toward clinical translation of localised drug delivery using MR-HIFU and TLD.
International Journal of Hyperthermia | 2015
Chenchen Bing; Joris Nofiele; Robert Staruch; Michelle Ladouceur-Wodzak; Yonatan Chatzinoff; Ashish Ranjan; Rajiv Chopra
Abstract Purpose: Localised hyperthermia in rodent studies is challenging due to the small target size. This study describes the development and characterisation of an MRI-compatible high-intensity focused ultrasound (HIFU) system to perform localised mild hyperthermia treatments in rodent models. Material and methods: The hyperthermia platform consisted of an MRI-compatible small animal HIFU system, focused transducers with sector-vortex lenses, a custom-made receive coil, and means to maintain systemic temperatures of rodents. The system was integrated into a 3T MR imager. Control software was developed to acquire images, process temperature maps, and adjust output power using a proportional-integral-derivative feedback control algorithm. Hyperthermia exposures were performed in tissue-mimicking phantoms and in a rodent model (n = 9). During heating, an ROI was assigned in the heated region for temperature control and the target temperature was 42 °C; 30 min mild hyperthermia treatment followed by a 10-min cooling procedure was performed on each animal. Results: 3D-printed sector-vortex lenses were successful at creating annular focal regions which enables customisation of the heating volume. Localised mild hyperthermia performed in rats produced a mean ROI temperature of 42.1 ± 0.3 °C. The T10 and T90 percentiles were 43.2 ± 0.4 °C and 41.0 ± 0.3 °C, respectively. For a 30-min treatment, the mean time duration between 41–45 °C was 31.1 min within the ROI. Conclusions: The MRI-compatible HIFU system was successfully adapted to perform localised mild hyperthermia treatment in rodent models. A target temperature of 42 °C was well-maintained in a rat thigh model for 30 min.
Medical Physics | 2014
Nicholas Ellens; Ilya Kobelevskiy; A. Chau; A. C. Waspe; Robert Staruch; Rajiv Chopra; Kullervo Hynynen
PURPOSE Assess the accuracy, precision, and sources of error using a preclinical MR-guided focused ultrasound system. METHODS A preclinical focused ultrasound system, described previously [Chopra et al., Med. Phys. 36(5), 1867-1874 (2009)], was tested on a benchtop and with 3T GE, 3T Philips, and 7 T Bruker MR scanners for spatial targeting accuracy and precision. Randomly distributed water-filled holes drilled into a polystyrene plate were imaged using MRI and targeted using treatment planning software. The ultrasound focus of a 72 mm, f-number 0.8, 1.16 MHz transducer was aimed at the target locations, and 1-2 s continuous-wave sonications were performed on clear polystyrene plates to create localized spots of melted plastic. The distance between target and observed locations was measured and analyzed. Retrospective analysis of targeting accuracy was performed on preclinical data obtained from other experiments at their institution using the same system. RESULTS The results suggest that the sources of targeting error under MR guidance can be roughly separated into three components--normally distributed random error; constant shift from inaccuracy in detection of the initial ultrasound focus; and angular misalignment between MR and focused ultrasound (FUS) coordinates. The lower bound on the targeting error was estimated to be 0.25 ± 0.13 mm, while the maximum observed targeting error did not exceed 2 mm. Measures required to reduce errors and improve targeting were developed to reduce the registration and misalignment errors such that maximum error was reduced to 0.36 ± 0.14 mm. Retrospective in vivo analysis indicated that the error was 1.02 ± 0.43 mm, including error extrinsic to the system. CONCLUSIONS The FUS system, as described, is capable of precise and accurate sonications. The largest source of error--misregistration of the coordinate systems of the scanner and ultrasound system--was addressed which reduced the error to 0.36 ± 0.14 mm, sufficient for many preclinical applications.
International Journal of Hyperthermia | 2016
Rachel Wardlow; Chenchen Bing; Joshua VanOsdol; Danny Maples; Michelle Ladouceur-Wodzak; Michele Harbeson; Joris Nofiele; Robert Staruch; Jerry R. Malayer; Rajiv Chopra; Ashish Ranjan
Abstract Chronic non-healing wound infections require long duration antibiotic therapy, and are associated with significant morbidity and health-care costs. Novel approaches for efficient, readily-translatable targeted and localised antimicrobial delivery are needed. The objectives of this study were to 1) develop low temperature-sensitive liposomes (LTSLs) containing an antimicrobial agent (ciprofloxacin) for induced release at mild hyperthermia (∼42 °C), 2) characterise in vitro ciprofloxacin release, and efficacy against Staphylococcus aureus plankton and biofilms, and 3) determine the feasibility of localised ciprofloxacin delivery in combination with MR-HIFU hyperthermia in a rat model. LTSLs were loaded actively with ciprofloxacin and their efficacy was determined using a disc diffusion method, MBEC biofilm device, and scanning electron microscopy (SEM). Ciprofloxacin release from LTSLs was assessed in a physiological buffer by fluorescence spectroscopy, and in vivo in a rat model using MR-HIFU. Results indicated that < 5% ciprofloxacin was released from the LTSL at body temperature (37 °C), while >95% was released at 42 °C. Precise hyperthermia exposures in the thigh of rats using MR-HIFU during intravenous (i.v.) administration of the LTSLs resulted in a four fold greater local concentration of ciprofloxacin compared to controls (free ciprofloxacin + MR-HIFU or LTSL alone). The biodistribution of ciprofloxacin in unheated tissues was fairly similar between treatment groups. Triggered release at 42 °C from LTSL achieved significantly greater S. aureus killing and induced membrane deformation and changes in biofilm matrix compared to free ciprofloxacin or LTSL at 37 °C. This technique has potential as a method to deliver high concentration antimicrobials to chronic wounds.
International Journal of Hyperthermia | 2016
Chenchen Bing; Robert Staruch; Matti Tillander; Max O. Köhler; Charles Mougenot; Mika Petri Ylihautala; Theodore W. Laetsch; Rajiv Chopra
Abstract There is growing interest in performing hyperthermia treatments with clinical magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) therapy systems designed for tissue ablation. During hyperthermia treatment, however, due to the narrow therapeutic window (41–45 °C), careful evaluation of the accuracy of proton resonant frequency (PRF) shift MR thermometry for these types of exposures is required. Purpose: The purpose of this study was to evaluate the accuracy of MR thermometry using a clinical MR-HIFU system equipped with a hyperthermia treatment algorithm. Methods: Mild heating was performed in a tissue-mimicking phantom with implanted temperature sensors using the clinical MR-HIFU system. The influence of image-acquisition settings and post-acquisition correction algorithms on the accuracy of temperature measurements was investigated. The ability to achieve uniform heating for up to 40 min was evaluated in rabbit experiments. Results: Automatic centre-frequency adjustments prior to image-acquisition corrected the image-shifts in the order of 0.1 mm/min. Zero- and first-order phase variations were observed over time, supporting the use of a combined drift correction algorithm. The temperature accuracy achieved using both centre-frequency adjustment and the combined drift correction algorithm was 0.57° ± 0.58 °C in the heated region and 0.54° ± 0.42 °C in the unheated region. Conclusion: Accurate temperature monitoring of hyperthermia exposures using PRF shift MR thermometry is possible through careful implementation of image-acquisition settings and drift correction algorithms. For the evaluated clinical MR-HIFU system, centre-frequency adjustment eliminated image shifts, and a combined drift correction algorithm achieved temperature measurements with an acceptable accuracy for monitoring and controlling hyperthermia exposures.
The Journal of Urology | 2017
Elizabeth Ramsay; Charles Mougenot; Robert Staruch; Aaron Boyes; Mohammad Kazem; Michael Bronskill; Harry Foster; Linda Sugar; Masoom A. Haider; Laurence Klotz; Rajiv Chopra
Purpose: We evaluated magnetic resonance imaging controlled transurethral ultrasound therapy as a treatment for magnetic resonance imaging defined focal prostate cancer using subsequent prostatectomy and histology as the reference standard. Materials and Methods: Five men completed this pilot study, which was approved by the institutional review board. Prior to radical prostatectomy focal tumors identified by magnetic resonance imaging were treated by coagulating targeted subtotal 3‐dimensional volumes of prostate tissue using magnetic resonance imaging controlled transurethral focused ultrasound. Treatment was performed with a 3 Tesla clinical magnetic resonance imaging unit combined with modified clinical planning software for high intensity focused ultrasound therapy. After prostatectomy whole mount histological sections parallel to the magnetic resonance imaging treatment planes were used to compare magnetic resonance imaging measurements with thermal damage at the cellular level and, thus, evaluate treatment and target accuracy. Results: Three‐dimensional target volumes of 4 to 20 cc and with radii up to 35 mm from the urethra were treated successfully. Mean ± SD temperature control accuracy at the target boundary was −1.6 ± 4.8C and the mean spatial targeting accuracy achieved was −1.5 ± 2.8 mm. Mean treatment accuracy with respect to histology was −0.4 ± 1.7 mm with all index tumors falling inside the histological outer limit of thermal injury. Conclusions: Magnetic resonance imaging guided transurethral ultrasound therapy is capable of generating thermal coagulation and tumor destruction in targeted 3‐dimensional angular sectors out to the prostate capsule for prostate glands up to 70 cc in volume. Ultrasound parameters needed to achieve ablation at the prostate capsule were determined, providing a foundation for future studies.