Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mattia Bonsignori is active.

Publication


Featured researches published by Mattia Bonsignori.


Nature | 2011

Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9

Jason S. McLellan; Marie Pancera; Chris Carrico; Jason Gorman; Jean-Philippe Julien; Reza Khayat; Robert K. Louder; Robert Pejchal; Mallika Sastry; Kaifan Dai; Sijy O’Dell; Nikita Patel; Syed Shahzad-ul-Hussan; Yongping Yang; Baoshan Zhang; Tongqing Zhou; Jiang Zhu; Jeffrey C. Boyington; Gwo-Yu Chuang; Devan Diwanji; Ivelin S. Georgiev; Young Do Kwon; Doyung Lee; Mark K. Louder; Stephanie Moquin; Stephen D. Schmidt; Zhi-Yong Yang; Mattia Bonsignori; John A. Crump; Saidi Kapiga

Variable regions 1 and 2 (V1/V2) of human immunodeficiency virus-1 (HIV-1) gp120 envelope glycoprotein are critical for viral evasion of antibody neutralization, and are themselves protected by extraordinary sequence diversity and N-linked glycosylation. Human antibodies such as PG9 nonetheless engage V1/V2 and neutralize 80% of HIV-1 isolates. Here we report the structure of V1/V2 in complex with PG9. V1/V2 forms a four-stranded β-sheet domain, in which sequence diversity and glycosylation are largely segregated to strand-connecting loops. PG9 recognition involves electrostatic, sequence-independent and glycan interactions: the latter account for over half the interactive surface but are of sufficiently weak affinity to avoid autoreactivity. The structures of V1/V2-directed antibodies CH04 and PGT145 indicate that they share a common mode of glycan penetration by extended anionic loops. In addition to structurally defining V1/V2, the results thus identify a paradigm of antibody recognition for highly glycosylated antigens, which—with PG9—involves a site of vulnerability comprising just two glycans and a strand.


Journal of Virology | 2011

Analysis of a Clonal Lineage of HIV-1 Envelope V2/V3 Conformational Epitope-Specific Broadly Neutralizing Antibodies and Their Inferred Unmutated Common Ancestors

Mattia Bonsignori; Kwan-Ki Hwang; Xi Chen; Chun-Yen Tsao; Lynn Morris; Elin S. Gray; Dawn J. Marshall; John A. Crump; Saidi Kapiga; Noel E. Sam; Faruk Sinangil; Marie Pancera; Yang Yongping; Baoshan Zhang; Jiang Zhu; Peter D. Kwong; Sijy O'Dell; John R. Mascola; Lan Wu; Gary J. Nabel; Sanjay Phogat; Michael S. Seaman; John F. Whitesides; M. Anthony Moody; Garnett Kelsoe; Xinzhen Yang; Joseph Sodroski; George M. Shaw; David C. Montefiori; Thomas B. Kepler

ABSTRACT V2/V3 conformational epitope antibodies that broadly neutralize HIV-1 (PG9 and PG16) have been recently described. Since an elicitation of previously known broadly neutralizing antibodies has proven elusive, the induction of antibodies with such specificity is an important goal for HIV-1 vaccine development. A critical question is which immunogens and vaccine formulations might be used to trigger and drive the development of memory B cell precursors with V2/V3 conformational epitope specificity. In this paper we identified a clonal lineage of four V2/V3 conformational epitope broadly neutralizing antibodies (CH01 to CH04) from an African HIV-1-infected broad neutralizer and inferred their common reverted unmutated ancestor (RUA) antibodies. While conformational epitope antibodies rarely bind recombinant Env monomers, a screen of 32 recombinant envelopes for binding to the CH01 to CH04 antibodies showed monoclonal antibody (MAb) binding to the E.A244 gp120 Env and to chronic Env AE.CM243; MAbs CH01 and CH02 also bound to transmitted/founder Env B.9021. CH01 to CH04 neutralized 38% to 49% of a panel of 91 HIV-1 tier 2 pseudoviruses, while the RUAs neutralized only 16% of HIV-1 isolates. Although the reverted unmutated ancestors showed restricted neutralizing activity, they retained the ability to bind to the E.A244 gp120 HIV-1 envelope with an affinity predicted to trigger B cell development. Thus, E.A244, B.9021, and AE.CM243 Envs are three potential immunogen candidates for studies aimed at defining strategies to induce V2/V3 conformational epitope-specific antibodies.


Journal of Virology | 2012

Antibody-Dependent Cellular Cytotoxicity-Mediating Antibodies from an HIV-1 Vaccine Efficacy Trial Target Multiple Epitopes and Preferentially Use the VH1 Gene Family

Mattia Bonsignori; Justin Pollara; M. Anthony Moody; Michael D. Alpert; Xi Chen; Kwan-Ki Hwang; Peter B. Gilbert; Ying Huang; Thaddeus C. Gurley; Daniel M. Kozink; Dawn J. Marshall; John F. Whitesides; Chun-Yen Tsao; Jaranit Kaewkungwal; Sorachai Nitayaphan; Punnee Pitisuttithum; Supachai Rerks-Ngarm; Jerome H. Kim; Nelson L. Michael; Georgia D. Tomaras; David C. Montefiori; George K. Lewis; Anthony L. DeVico; David T. Evans; Guido Ferrari; Hua-Xin Liao; Barton F. Haynes

ABSTRACT The ALVAC-HIV/AIDSVAX-B/E RV144 vaccine trial showed an estimated efficacy of 31%. RV144 secondary immune correlate analysis demonstrated that the combination of low plasma anti-HIV-1 Env IgA antibodies and high levels of antibody-dependent cellular cytotoxicity (ADCC) inversely correlate with infection risk. One hypothesis is that the observed protection in RV144 is partially due to ADCC-mediating antibodies. We found that the majority (73 to 90%) of a representative group of vaccinees displayed plasma ADCC activity, usually (96.2%) blocked by competition with the C1 region-specific A32 Fab fragment. Using memory B-cell cultures and antigen-specific B-cell sorting, we isolated 23 ADCC-mediating nonclonally related antibodies from 6 vaccine recipients. These antibodies targeted A32-blockable conformational epitopes (n = 19), a non-A32-blockable conformational epitope (n = 1), and the gp120 Env variable loops (n = 3). Fourteen antibodies mediated cross-clade target cell killing. ADCC-mediating antibodies displayed modest levels of V-heavy (VH) chain somatic mutation (0.5 to 1.5%) and also displayed a disproportionate usage of VH1 family genes (74%), a phenomenon recently described for CD4-binding site broadly neutralizing antibodies (bNAbs). Maximal ADCC activity of VH1 antibodies correlated with mutation frequency. The polyclonality and low mutation frequency of these VH1 antibodies reveal fundamental differences in the regulation and maturation of these ADCC-mediating responses compared to VH1 bNAbs.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Vaccine-induced plasma IgA specific for the C1 region of the HIV-1 envelope blocks binding and effector function of IgG

Georgia D. Tomaras; Guido Ferrari; Xiaoying Shen; S. Munir Alam; Hua-Xin Liao; Justin Pollara; Mattia Bonsignori; M. Anthony Moody; Youyi Fong; Xi Chen; Brigid Poling; Cindo O. Nicholson; Ruijun Zhang; Xiaozhi Lu; Robert Parks; Jaranit Kaewkungwal; Sorachai Nitayaphan; Punnee Pitisuttithum; Supachai Rerks-Ngarm; Peter B. Gilbert; Jerome H. Kim; Nelson L. Michael; David C. Montefiori; Barton F. Haynes

Analysis of correlates of risk of infection in the RV144 HIV-1 vaccine efficacy trial demonstrated that plasma IgG against the HIV-1 envelope (Env) variable region 1 and 2 inversely correlated with risk, whereas HIV-1 Env-specific plasma IgA responses directly correlated with risk. In the secondary analysis, antibody-dependent cellular cytotoxicity (ADCC) was another inverse correlate of risk, but only in the presence of low plasma IgA Env-specific antibodies. Thus, we investigated the hypothesis that IgA could attenuate the protective effect of IgG responses through competition for the same Env binding sites. We report that Env-specific plasma IgA/IgG ratios are higher in infected than in uninfected vaccine recipients in RV144. Moreover, Env-specific IgA antibodies from RV144 vaccinees blocked the binding of ADCC-mediating mAb to HIV-1 Env glycoprotein 120 (gp120). An Env-specific monomeric IgA mAb isolated from an RV144 vaccinee also inhibited the ability of natural killer cells to kill HIV-1–infected CD4+ T cells coated with RV144-induced IgG antibodies. We show that monomeric Env-specific IgA, as part of postvaccination polyclonal antibody response, may modulate vaccine-induced immunity by diminishing ADCC effector function.


The Journal of Infectious Diseases | 2012

Magnitude and Breadth of the Neutralizing Antibody Response in the RV144 and Vax003 HIV-1 Vaccine Efficacy Trials

David C. Montefiori; Chitraporn Karnasuta; Ying Huang; Hasan Ahmed; Peter B. Gilbert; Mark S. de Souza; Robert McLinden; Sodsai Tovanabutra; Agnes Laurence-Chenine; Eric Sanders-Buell; M. Anthony Moody; Mattia Bonsignori; Christina Ochsenbauer; John C. Kappes; Haili Tang; Kelli M. Greene; Hongmei Gao; Celia C. LaBranche; Charla Andrews; Victoria R. Polonis; Supachai Rerks-Ngarm; Punnee Pitisuttithum; Sorachai Nitayaphan; Jaranit Kaewkungwal; Steve Self; Phillip W. Berman; Donald P. Francis; Faruk Sinangil; Carter Lee; Jim Tartaglia

Background. A recombinant canarypox vector expressing human immunodeficiency virus type 1 (HIV-1) Gag, Pro, and membrane-linked gp120 (vCP1521), combined with a bivalent gp120 protein boost (AIDSVAX B/E), provided modest protection against HIV-1 infection in a community-based population in Thailand (RV144 trial). No protection was observed in Thai injection drug users who received AIDSVAX B/E alone (Vax003 trial). We compared the neutralizing antibody response in these 2 trials. Methods. Neutralization was assessed with tier 1 and tier 2 strains of virus in TZM-bl and A3R5 cells. Results. Neutralization of several tier 1 viruses was detected in both RV144 and Vax003. Peak titers were higher in Vax003 and waned rapidly in both trials. The response in RV144 was targeted in part to V3 of gp120.vCP1521 priming plus 2 boosts with gp120 protein was superior to 2 gp120 protein inoculations alone, confirming a priming effect for vCP1521. Sporadic weak neutralization of tier 2 viruses was detected only in Vax003 and A3R5 cells. Conclusion. The results suggest either that weak neutralizing antibody responses can be partially protective against HIV-1 in low-risk heterosexual populations or that the modest efficacy seen in RV144 was mediated by other immune responses, either alone or in combination with neutralizing antibodies.


Immunity | 2013

Multidonor Analysis Reveals Structural Elements, Genetic Determinants, and Maturation Pathway for HIV-1 Neutralization by VRC01-Class Antibodies.

Tongqing Zhou; Jiang Zhu; Xueling Wu; Stephanie Moquin; Baoshan Zhang; Priyamvada Acharya; Ivelin S. Georgiev; Han R. Altae-Tran; Gwo-Yu Chuang; M. Gordon Joyce; Young Do Kwon; Nancy S. Longo; Mark K. Louder; Timothy S. Luongo; Krisha McKee; Chaim A. Schramm; Jeff Skinner; Yongping Yang; Zhongjia Yang; Z. F. Zhang; Anqi Zheng; Mattia Bonsignori; Barton F. Haynes; Johannes F. Scheid; Michel C. Nussenzweig; Melissa Simek; Dennis R. Burton; Wayne C. Koff; James C. Mullikin; Mark Connors

Antibodies of the VRC01 class neutralize HIV-1, arise in diverse HIV-1-infected donors, and are potential templates for an effective HIV-1 vaccine. However, the stochastic processes that generate repertoires in each individual of >10(12) antibodies make elicitation of specific antibodies uncertain. Here we determine the ontogeny of the VRC01 class by crystallography and next-generation sequencing. Despite antibody-sequence differences exceeding 50%, antibody-gp120 cocrystal structures reveal VRC01-class recognition to be remarkably similar. B cell transcripts indicate that VRC01-class antibodies require few specific genetic elements, suggesting that naive-B cells with VRC01-class features are generated regularly by recombination. Virtually all of these fail to mature, however, with only a few-likely one-ancestor B cell expanding to form a VRC01-class lineage in each donor. Developmental similarities in multiple donors thus reveal the generation of VRC01-class antibodies to be reproducible in principle, thereby providing a framework for attempts to elicit similar antibodies in the general population.


Cell | 2014

Cooperation of B Cell Lineages in Induction of HIV-1-Broadly Neutralizing Antibodies

Feng Gao; Mattia Bonsignori; Hua-Xin Liao; Amit Kumar; Shi Mao Xia; Xiaozhi Lu; Fangping Cai; Kwan Ki Hwang; Hongshuo Song; Tongqing Zhou; Rebecca M. Lynch; S. Munir Alam; M. Anthony Moody; Guido Ferrari; Mark Berrong; Garnett Kelsoe; George M. Shaw; Beatrice H. Hahn; David C. Montefiori; Gift Kamanga; Myron S. Cohen; Peter Hraber; Peter D. Kwong; Bette T. Korber; John R. Mascola; Thomas B. Kepler; Barton F. Haynes

Development of strategies for induction of HIV-1 broadly neutralizing antibodies (bnAbs) by vaccines is a priority. Determining the steps of bnAb induction in HIV-1-infected individuals who make bnAbs is a key strategy for immunogen design. Here, we study the B cell response in a bnAb-producing individual and report cooperation between two B cell lineages to drive bnAb development. We isolated a virus-neutralizing antibody lineage that targeted an envelope region (loop D) and selected virus escape mutants that resulted in both enhanced bnAb lineage envelope binding and escape mutant neutralization-traits associated with increased B cell antigen drive. Thus, in this individual, two B cell lineages cooperated to induce the development of bnAbs. Design of vaccine immunogens that simultaneously drive both helper and broadly neutralizing B cell lineages may be important for vaccine-induced recapitulation of events that transpire during the maturation of neutralizing antibodies in HIV-1-infected individuals.


PLOS Pathogens | 2012

Early Low-Titer Neutralizing Antibodies Impede HIV-1 Replication and Select for Virus Escape

Katharine J. Bar; Chun-Yen Tsao; Shilpa S. Iyer; Julie M. Decker; Yongping Yang; Mattia Bonsignori; Xi Chen; Kwan-Ki Hwang; David C. Montefiori; Hua-Xin Liao; Peter Hraber; William Fischer; Hui Joyce Li; Shuyi Wang; Sarah Sterrett; Brandon F. Keele; Vitaly V. Ganusov; Alan S. Perelson; Bette T. Korber; Ivelin S. Georgiev; Jason S. McLellan; Jeffrey W. Pavlicek; Feng Gao; Barton F. Haynes; Beatrice H. Hahn; Peter D. Kwong; George M. Shaw

Single genome sequencing of early HIV-1 genomes provides a sensitive, dynamic assessment of virus evolution and insight into the earliest anti-viral immune responses in vivo. By using this approach, together with deep sequencing, site-directed mutagenesis, antibody adsorptions and virus-entry assays, we found evidence in three subjects of neutralizing antibody (Nab) responses as early as 2 weeks post-seroconversion, with Nab titers as low as 1∶20 to 1∶50 (IC50) selecting for virus escape. In each of the subjects, Nabs targeted different regions of the HIV-1 envelope (Env) in a strain-specific, conformationally sensitive manner. In subject CH40, virus escape was first mediated by mutations in the V1 region of the Env, followed by V3. HIV-1 specific monoclonal antibodies from this subject mapped to an immunodominant region at the base of V3 and exhibited neutralizing patterns indistinguishable from polyclonal antibody responses, indicating V1–V3 interactions within the Env trimer. In subject CH77, escape mutations mapped to the V2 region of Env, several of which selected for alterations of glycosylation. And in subject CH58, escape mutations mapped to the Env outer domain. In all three subjects, initial Nab recognition was followed by sequential rounds of virus escape and Nab elicitation, with Nab escape variants exhibiting variable costs to replication fitness. Although delayed in comparison with autologous CD8 T-cell responses, our findings show that Nabs appear earlier in HIV-1 infection than previously recognized, target diverse sites on HIV-1 Env, and impede virus replication at surprisingly low titers. The unexpected in vivo sensitivity of early transmitted/founder virus to Nabs raises the possibility that similarly low concentrations of vaccine-induced Nabs could impair virus acquisition in natural HIV-1 transmission, where the risk of infection is low and the number of viruses responsible for transmission and productive clinical infection is typically one.


Journal of Virology | 2014

Interaction with Cellular CD4 Exposes HIV-1 Envelope Epitopes Targeted by Antibody-Dependent Cell-Mediated Cytotoxicity

Maxime Veillette; Anik Désormeaux; Halima Medjahed; Nour-Elhouda Gharsallah; Mathieu Coutu; Joshua Baalwa; Yongjun Guan; George K. Lewis; Guido Ferrari; Beatrice H. Hahn; Barton F. Haynes; James E. Robinson; Daniel E. Kaufmann; Mattia Bonsignori; Joseph Sodroski; Andrés Finzi

ABSTRACT Anti-HIV-1 envelope glycoprotein (Env) antibodies without broadly neutralizing activity correlated with protection in the RV144 clinical trial, stimulating interest in other protective mechanisms involving antibodies, such as antibody-dependent cell-mediated cytotoxicity (ADCC). Env epitopes targeted by many antibodies effective at mediating ADCC are poorly exposed on the unliganded Env trimer. Here we investigated the mechanism of exposure of ADCC epitopes on Env and showed that binding of Env and CD4 within the same HIV-1-infected cell effectively exposes these epitopes. Env capacity to transit to the CD4-bound conformation is required for ADCC epitope exposure. Importantly, cell surface CD4 downregulation by Nef and Vpu accessory proteins and Vpu-mediated BST-2 antagonism modulate exposure of ADCC-mediating epitopes and reduce the susceptibility of infected cells to this effector function in vitro. Significantly, Env conformational changes induced by cell surface CD4 are conserved among Env from HIV-1 and HIV-2/SIVmac lineages. Altogether, our observations describe a highly conserved mechanism required to expose ADCC epitopes that might help explain the evolutionary advantage of downregulation of cell surface CD4 by the HIV-1 Vpu and Nef proteins. IMPORTANCE HIV-1 envelope epitopes targeted by many antibodies effective at mediating antibody-dependent cell-mediated cytotoxicity (ADCC) are poorly exposed on the unliganded envelope trimer. Here we investigated the mechanism of exposure of these epitopes and found that envelope interaction with the HIV-1 CD4 receptor is required to expose some of these epitopes. Moreover, our results suggest that HIV-1 CD4 downregulation might help avoid the killing of HIV-1-infected cells by this immune mechanism.


Journal of Virology | 2012

Two Distinct Broadly Neutralizing Antibody Specificities of Different Clonal Lineages in a Single HIV-1-Infected Donor: Implications for Vaccine Design

Mattia Bonsignori; David C. Montefiori; Xueling Wu; Xi Chen; Kwan-Ki Hwang; Chun-Yen Tsao; Daniel M. Kozink; Robert Parks; Georgia D. Tomaras; John A. Crump; Saidi Kapiga; Noel E. Sam; Peter D. Kwong; Thomas B. Kepler; Hua-Xin Liao; John R. Mascola; Barton F. Haynes

ABSTRACT Plasma from a small subset of subjects chronically infected with HIV-1 shows remarkable magnitude and breadth of neutralizing activity. From one of these individuals (CH0219), we isolated two broadly neutralizing antibodies (bnAbs), CH01 and VRC-CH31, from two clonal lineages of memory B cells with distinct specificities (variable loop 1 and 2 [V1V2] conformational specificity and CD4-binding site specificity, respectively) that recapitulate 95% of CH0219 serum neutralization breadth. These data provide proof of concept for an HIV-1 vaccine that aims to elicit bnAbs of multiple specificities.

Collaboration


Dive into the Mattia Bonsignori's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge