Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mattias Aine is active.

Publication


Featured researches published by Mattias Aine.


Clinical Cancer Research | 2012

A Molecular Taxonomy for Urothelial Carcinoma

Gottfrid Sjödahl; Martin Lauss; Kristina Lövgren; Gunilla Chebil; Sigurdur Gudjonsson; Srinivas Veerla; Oliver Hultman Patschan; Mattias Aine; Mårten Fernö; Markus Ringnér; Wiking Månsson; Fredrik Liedberg; David Lindgren; Mattias Höglund

Purpose: Even though urothelial cancer is the fourth most common tumor type among males, progress in treatment has been scarce. A problem in day-to-day clinical practice is that precise assessment of individual tumors is still fairly uncertain; consequently efforts have been undertaken to complement tumor evaluation with molecular biomarkers. An extension of this approach would be to base tumor classification primarily on molecular features. Here, we present a molecular taxonomy for urothelial carcinoma based on integrated genomics. Experimental Design: We use gene expression profiles from 308 tumor cases to define five major urothelial carcinoma subtypes: urobasal A, genomically unstable, urobasal B, squamous cell carcinoma like, and an infiltrated class of tumors. Tumor subtypes were validated in three independent publically available data sets. The expression of 11 key genes was validated at the protein level by immunohistochemistry. Results: The subtypes show distinct clinical outcomes and differ with respect to expression of cell-cycle genes, receptor tyrosine kinases particularly FGFR3, ERBB2, and EGFR, cytokeratins, and cell adhesion genes, as well as with respect to FGFR3, PIK3CA, and TP53 mutation frequency. The molecular subtypes cut across pathologic classification, and class-defining gene signatures show coordinated expression irrespective of pathologic stage and grade, suggesting the molecular phenotypes as intrinsic properties of the tumors. Available data indicate that susceptibility to specific drugs is more likely to be associated with the molecular stratification than with pathologic classification. Conclusions: We anticipate that the molecular taxonomy will be useful in future clinical investigations. Clin Cancer Res; 18(12); 3377–86. ©2012 AACR.


Cancer Cell | 2016

Comprehensive Transcriptional Analysis of Early-Stage Urothelial Carcinoma

Jakob Hedegaard; Philippe Lamy; Iver Nordentoft; Ferran Algaba; Søren Høyer; Benedicte Parm Ulhøi; Søren Vang; Thomas Reinert; Gregers G. Hermann; Karin Mogensen; Mathilde Borg Houlberg Thomsen; Morten Muhlig Nielsen; Mirari Marquez; Ulrika Segersten; Mattias Aine; Mattias Höglund; Karin Birkenkamp-Demtröder; Niels Fristrup; Michael Borre; Arndt Hartmann; Robert Stöhr; Sven Wach; Bastian Keck; Anna Katharina Seitz; Roman Nawroth; Tobias Maurer; Cane Tulic; Tatjana Simic; Kerstin Junker; Marcus Horstmann

Non-muscle-invasive bladder cancer (NMIBC) is a heterogeneous disease with widely different outcomes. We performed a comprehensive transcriptional analysis of 460 early-stage urothelial carcinomas and showed that NMIBC can be subgrouped into three major classes with basal- and luminal-like characteristics and different clinical outcomes. Large differences in biological processes such as the cell cycle, epithelial-mesenchymal transition, and differentiation were observed. Analysis of transcript variants revealed frequent mutations in genes encoding proteins involved in chromatin organization and cytoskeletal functions. Furthermore, mutations in well-known cancer driver genes (e.g., TP53 and ERBB2) were primarily found in high-risk tumors, together with APOBEC-related mutational signatures. The identification of subclasses in NMIBC may offer better prognostication and treatment selection based on subclass assignment.


American Journal of Pathology | 2013

Toward a Molecular Pathologic Classification of Urothelial Carcinoma

Gottfrid Sjödahl; Kristina Lövgren; Martin Lauss; Oliver Hultman Patschan; Sigurdur Gudjonsson; Gunilla Chebil; Mattias Aine; Pontus Eriksson; Wiking Månsson; David Lindgren; Mårten Fernö; Fredrik Liedberg; Mattias Höglund

We recently defined molecular subtypes of urothelial carcinomas according to whole genome gene expression. Herein we describe molecular pathologic characterization of the subtypes using 20 genes and IHC of 237 tumors. In addition to differences in expression levels, the subtypes show important differences in stratification of protein expression. The selected genes included biological features central to bladder cancer biology, eg, cell cycle activity, cellular architecture, cell-cell interactions, and key receptor tyrosine kinases. We show that the urobasal (Uro) A subtype shares features with normal urothelium such as keratin 5 (KRT5), P-cadherin (P-Cad), and epidermal growth factor receptor (EGFR) expression confined to basal cells, and cell cycle activity (CCNB1) restricted to the tumor-stroma interface. In contrast, the squamous cell cancer-like (SCCL) subtype uniformly expresses KRT5, P-Cad, EGFR, KRT14, and cell cycle genes throughout the tumor parenchyma. The genomically unstable subtype shows proliferation throughout the tumor parenchyma and high ERBB2 and E-Cad expression but absence of KRT5, P-Cad, and EGFR expression. UroB tumors demonstrate features shared by both UroA and SCCL subtypes. A major transition in tumor progression seems to be loss of dependency of stromal interaction for proliferation. We present a simple IHC/histology-based classifier that is easy to implement as a standard pathologic evaluation to differentiate the three major subtypes: urobasal, genomically unstable, and SCCL. These three major subtypes exhibit important prognostic differences.


European Urology | 2015

A Molecular Pathologic Framework for Risk Stratification of Stage T1 Urothelial Carcinoma

Oliver Hultman Patschan; Gottfrid Sjödahl; Gunilla Chebil; Kristina Lövgren; Martin Lauss; Sigurdur Gudjonsson; Petter Kollberg; Pontus Eriksson; Mattias Aine; Wiking Månsson; Mårten Fernö; Fredrik Liedberg; Mattias Höglund

BACKGROUND One third of patients with stage T1 urothelial carcinoma (UC) progress to muscle-invasive disease requiring radical surgery. Thus, reliable tools are needed for risk stratification of stage T1 UC. OBJECTIVE To investigate the extent to which stratification of stage T1 tumours into previously described molecular pathologic UC subtypes can provide improved information on tumour progression. DESIGN, SETTING, AND PARTICIPANTS A population-based cohort of 167 primary stage T1 UCs was characterised by immunohistochemistry and classified into the molecular subtypes urobasal (Uro, 32%), genomically unstable (GU, 58%), and squamous-cell-carcinoma-like (SCCL, 10%). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Progression-free survival using univariate and multivariate models. RESULTS AND LIMITATIONS Subtype classification was validated using nine additional markers with known subtype-specific expression. Analysis of mRNA expression of progression biomarkers revealed a strong association with molecular subtype. Kaplan-Meier analyses showed that the risk of progression was low for Uro tumours and high for GU/SCCL tumours. High progression risk scores were found only for GU/SCCL tumours. Clinical risk factors such as multifocality, concomitant carcinoma in situ, invasion depth, lymphovascular invasion, and high CD3(+) lymphocyte infiltration were observed almost exclusively in GU/SCCL cases. CONCLUSIONS Molecular subtypes Uro, GU, and SCCL were identified in an independent population-based cohort of stage T1 UCs. Biomarkers and clinical risk factors for progression were associated with molecular subtype. Rapidly progressing T1 tumours were of subtype GU or SCCL and had either a high progression risk score or an elevated CD3(+) cell count. PATIENT SUMMARY We show that classification of stage T1 urothelial carcinoma into molecular subtypes can improve the identification of patients with progressing tumours.


Epigenetics | 2012

DNA methylation analyses of urothelial carcinoma reveal distinct epigenetic subtypes and an association between gene copy number and methylation status

Martin Lauss; Mattias Aine; Gottfrid Sjödahl; Srinivas Veerla; Oliver Hultman Patschan; Sigurdur Gudjonsson; Gunilla Chebil; Kristina Lövgren; Mårten Fernö; Wiking Månsson; Fredrik Liedberg; Markus Ringnér; David Lindgren; Mattias Höglund

We assessed DNA methylation and copy number status of 27,000 CpGs in 149 urothelial carcinomas and integrated the findings with gene expression and mutation data. Methylation was associated with gene expression for 1,332 CpGs, of which 26% showed positive correlation with expression, i.e., high methylation and high gene expression levels. These positively correlated CpGs were part of specific transcription factor binding sites, such as sites for MYC and CREBP1, or located in gene bodies. Furthermore, we found genes with copy number gains, low expression and high methylation levels, revealing an association between methylation and copy number levels. This phenomenon was typically observed for developmental genes, such as HOX genes, and tumor suppressor genes. In contrast, we also identified genes with copy number gains, high expression and low methylation levels. This was for instance observed for some keratin genes. Tumor cases could be grouped into four subgroups, termed epitypes, by their DNA methylation profiles. One epitype was influenced by the presence of infiltrating immune cells, two epitypes were mainly composed of non-muscle invasive tumors, and the remaining epitype of muscle invasive tumors. The polycomb complex protein EZH2 that blocks differentiation in embryonic stem cells showed increased expression both at the mRNA and protein levels in the muscle invasive epitype, together with methylation of polycomb target genes and HOX genes. Our data highlights HOX gene silencing and EZH2 expression as mechanisms to promote a more undifferentiated and aggressive state in UC.


European Urology | 2017

Genetic Alterations in the Molecular Subtypes of Bladder Cancer : Illustration in the Cancer Genome Atlas Dataset

Woonyoung Choi; Andrea Ochoa; David J. McConkey; Mattias Aine; Mattias Höglund; William Y. Kim; Francisco X. Real; Anne E. Kiltie; Ian Milsom; Lars Dyrskjøt; Seth P. Lerner

CONTEXT Recent whole genome mRNA expression profiling studies revealed that bladder cancers can be grouped into molecular subtypes, some of which share clinical properties and gene expression patterns with the intrinsic subtypes of breast cancer and the molecular subtypes found in other solid tumors. The molecular subtypes in other solid tumors are enriched with specific mutations and copy number aberrations that are thought to underlie their distinct progression patterns, and biological and clinical properties. OBJECTIVE The availability of comprehensive genomic data from The Cancer Genome Atlas (TCGA) and other large projects made it possible to correlate the presence of DNA alterations with tumor molecular subtype membership. Our overall goal was to determine whether specific DNA mutations and/or copy number variations are enriched in specific molecular subtypes. EVIDENCE We used the complete TCGA RNA-seq dataset and three different published classifiers developed by our groups to assign TCGAs bladder cancers to molecular subtypes, and examined the prevalence of the most common DNA alterations within them. We interpreted the results against the background of what was known from the published literature about the prevalence of these alterations in nonmuscle-invasive and muscle-invasive bladder cancers. EVIDENCE SYNTHESIS The results confirmed that alterations involving RB1 and NFE2L2 were enriched in basal cancers, whereas alterations involving FGFR3 and KDM6A were enriched in luminal tumors. CONCLUSIONS The results further reinforce the conclusion that the molecular subtypes of bladder cancer are distinct disease entities with specific genetic alterations. PATIENT SUMMARY Our observation showed that some of subtype-enriched mutations and copy number aberrations are clinically actionable, which has direct implications for the clinical management of patients with bladder cancer.


Scientific Reports | 2015

Biological determinants of bladder cancer gene expression subtypes

Mattias Aine; Pontus Eriksson; Fredrik Liedberg; Gottfrid Sjödahl; Mattias Höglund

Molecular stratification of tumors by gene expression profiling has been applied to a large number of human malignancies and holds great promise for personalized treatment. Comprehensive classification schemes for urothelial carcinoma have been proposed by three separate groups but have not previously been evaluated simultaneously in independent data. Here we map the interrelations between the proposed molecular subtypes onto the intrinsic structure of a rich independent dataset and show that subtype stratification within each scheme can be explained in terms of a set of common underlying biological processes. We highlight novel biological and genomic drivers of urothelial carcinoma molecular subtypes and show that tumors carrying genomic aberrations characteristic of distinct molecular pathways converge on a common top level phenotype corresponding to the two major molecular subtypes of non-muscle invasive disease.


BMC Medical Genomics | 2015

Molecular subtypes of urothelial carcinoma are defined by specific gene regulatory systems

Pontus Eriksson; Mattias Aine; Srinivas Veerla; Fredrik Liedberg; Gottfrid Sjödahl; Mattias Höglund

BackgroundMolecular stratification of bladder cancer has revealed gene signatures differentially expressed across tumor subtypes. While these signatures provide important insights into subtype biology, the transcriptional regulation that governs these signatures is not well characterized.MethodsIn this study, we use publically available ChIP-Seq data on regulatory factor binding in order to link transcription factors to gene signatures defining molecular subtypes of urothelial carcinoma.ResultsWe identify PPARG and STAT3, as well as ADIRF, a novel regulator of fatty acid metabolism, as putative mediators of the SCC-like phenotype. We link the PLK1-FOXM1 axis to the rapidly proliferating Genomically Unstable and SCC-like subtypes and show that differentiation programs involving PPARG/RXRA, FOXA1/GATA3 and HOXA/HOXB are differentially expressed in UC molecular subtypes. We show that gene signatures and regulatory systems defined in urothelial carcinoma operate in breast cancer in a subtype specific manner, suggesting similarities at the gene regulatory level of these two tumor types.ConclusionsAt the gene regulatory level Urobasal, Genomically Unstable and SCC-like tumors represents three fundamentally different tumor types. Urobasal tumors maintain an apparent urothelial differentiation axis composed of PPARG/RXRA, FOXA1/GATA3 and anterior HOXA and HOXB genes. Genomically Unstable and SCC-like tumors differ from Urobasal tumors by a strong increase of proliferative activity through the PLK1-FOXM1 axis operating in both subtypes. However, whereas SCC-like tumors evade urothelial differentiation by a block in differentiation through strong downregulation of PPARG/RXRA, FOXA1/GATA3, our data indicates that Genomically Unstable tumors evade differentiation in a more dynamic manner.


Breast Cancer Research | 2016

An integrated genomics analysis of epigenetic subtypes in human breast tumors links DNA methylation patterns to chromatin states in normal mammary cells.

Karolina Holm; Johan Staaf; Martin Lauss; Mattias Aine; David Lindgren; Pär-Ola Bendahl; Johan Vallon-Christersson; Rosa B. Barkardottir; Mattias Höglund; Åke Borg; Göran Jönsson; Markus Ringnér

BackgroundAberrant DNA methylation is frequently observed in breast cancer. However, the relationship between methylation patterns and the heterogeneity of breast cancer has not been comprehensively characterized.MethodsWhole-genome DNA methylation analysis using Illumina Infinium HumanMethylation450 BeadChip arrays was performed on 188 human breast tumors. Unsupervised bootstrap consensus clustering was performed to identify DNA methylation epigenetic subgroups (epitypes). The Cancer Genome Atlas data, including methylation profiles of 669 human breast tumors, was used for validation. The identified epitypes were characterized by integration with publicly available genome-wide data, including gene expression levels, DNA copy numbers, whole-exome sequencing data, and chromatin states.ResultsWe identified seven breast cancer epitypes. One epitype was distinctly associated with basal-like tumors and with BRCA1 mutations, one epitype contained a subset of ERBB2-amplified tumors characterized by multiple additional amplifications and the most complex genomes, and one epitype displayed a methylation profile similar to normal epithelial cells. Luminal tumors were stratified into the remaining four epitypes, with differences in promoter hypermethylation, global hypomethylation, proliferative rates, and genomic instability. Specific hyper- and hypomethylation across the basal-like epitype was rare. However, we observed that the candidate genomic instability drivers BRCA1 and HORMAD1 displayed aberrant methylation linked to gene expression levels in some basal-like tumors. Hypomethylation in luminal tumors was associated with DNA repeats and subtelomeric regions. We observed two dominant patterns of aberrant methylation in breast cancer. One pattern, constitutively methylated in both basal-like and luminal breast cancer, was linked to genes with promoters in a Polycomb-repressed state in normal epithelial cells and displayed no correlation with gene expression levels. The second pattern correlated with gene expression levels and was associated with methylation in luminal tumors and genes with active promoters in normal epithelial cells.ConclusionsOur results suggest that hypermethylation patterns across basal-like breast cancer may have limited influence on tumor progression and instead reflect the repressed chromatin state of the tissue of origin. On the contrary, hypermethylation patterns specific to luminal breast cancer influence gene expression, may contribute to tumor progression, and may present an actionable epigenetic alteration in a subset of luminal breast cancers.


Journal of Investigative Dermatology | 2015

Genome-wide DNA methylation analysis in melanoma reveals the importance of CpG methylation in MITF regulation

Martin Lauss; Rizwan Haq; Helena Cirenajwis; Bengt Phung; Katja Harbst; Johan Staaf; Frida Rosengren; Karolina Holm; Mattias Aine; Karin Jirström; Åke Borg; Christian Busch; Jürgen Geisler; Per Eystein Lønning; Markus Ringnér; Jillian Howlin; David E. Fisher; Göran Jönsson

The microphthalmia-associated transcription factor (MITF) is a key regulator of melanocyte development and a lineage-specific oncogene in melanoma; a highly lethal cancer known for its unpredictable clinical course. MITF is regulated by multiple intracellular signaling pathways, although the exact mechanisms that determine MITF expression and activity remain incompletely understood. In this study, we obtained genome-wide DNA methylation profiles from 50 stage IV melanomas, normal melanocytes, keratinocytes, and dermal fibroblasts and utilized The Cancer Genome Atlas data for experimental validation. By integrating DNA methylation and gene expression data, we found that hypermethylation of MITF and its co-regulated differentiation pathway genes corresponded to decreased gene expression levels. In cell lines with a hypermethylated MITF-pathway, overexpression of MITF did not alter the expression level or methylation status of the MITF pathway genes. In contrast, however, demethylation treatment of these cell lines induced MITF-pathway activity, confirming that gene regulation was controlled via methylation. The discovery that the activity of the master regulator of pigmentation, MITF, and its downstream targets may be regulated by hypermethylation has significant implications for understanding the development and evolvement of melanoma.

Collaboration


Dive into the Mattias Aine's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge