Mattijs Jonker
University of Twente
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mattijs Jonker.
IEEE Journal on Selected Areas in Communications | 2016
Roland van Rijswijk-Deij; Mattijs Jonker; Anna Sperotto; Aiko Pras
The domain name system (DNS) is a core component of the Internet. It performs the vital task of mapping human readable names into machine readable data (such as IP addresses, which hosts handle e-mail, and so on). The content of the DNS reveals a lot about the technical operations of a domain. Thus, studying the state of large parts of the DNS over time reveals valuable information about the evolution of the Internet. We collect a unique long-term data set with daily DNS measurements for all the domains under the main top-level domains (TLDs) on the Internet (including .com, .net, and .org, comprising 50% of the global DNS name space). This paper discusses the challenges of performing such a large-scale active measurement. These challenges include scaling the daily measurement to collect data for the largest TLD (.com, with 123M names) and ensuring that a measurement of this scale does not impose an unacceptable burden on the global DNS infrastructure. The paper discusses the design choices we have made to meet these challenges and documents the design of the measurement system we implemented based on these choices. Two case studies related to cloud e-mail services illustrate the value of measuring the DNS at this scale. The data this system collects is valuable to the network research community. Therefore, we end this paper by discussing how we make the data accessible to other researchers.
internet measurement conference | 2016
Mattijs Jonker; Anna Sperotto; Roland van Rijswijk-Deij; Ramin Sadre; Aiko Pras
Distributed Denial-of-Service (DDoS) attacks have steadily gained in popularity over the last decade, their intensity ranging from mere nuisance to severe. The increased number of attacks, combined with the loss of revenue for the targets, has given rise to a market for DDoS Protection Service (DPS) providers, to whom victims can outsource the cleansing of their traffic by using traffic diversion. In this paper, we investigate the adoption of cloud-based DPSs worldwide. We focus on nine leading providers. Our outlook on adoption is made on the basis of active DNS measurements. We introduce a methodology that allows us, for a given domain name, to determine if traffic diversion to a DPS is in effect. It also allows us to distinguish various methods of traffic diversion and protection. For our analysis we use a long-term, large-scale data set that covers well over 50\% of all names in the global domain namespace, in daily snapshots, over a period of 1.5 years. Our results show that DPS adoption has grown by 1.24x in our measurement period, a prominent trend compared to the overall expansion of the namespace. Our study also reveals that adoption is often lead by big players such as large Web hosters, which activate or deactivate DDoS protection for millions of domain names at once.
conference on network and service management | 2016
Roland van Rijswijk-Deij; Mattijs Jonker; Anna Sperotto
The Domain Name System Security Extensions (DNSSEC) are steadily being deployed across the Internet. DNSSEC extends the DNS protocol with two vital security properties, authenticity and integrity, using digital signatures. While DNSSEC is meant to solve security issues in the DNS, it also introduces a new one: the digital signatures significantly increase DNS packet sizes, making DNSSEC an attractive vector to abuse in amplification denial-of-service attacks. By default, DNSSEC uses RSA for digital signatures. Earlier work has shown that alternative signature schemes, based on elliptic curve cryptography, can significantly reduce the impact of signatures on DNS response sizes. In this paper we study the actual adoption of ECDSA by DNSSEC operators, based on longitudinal datasets covering over 50% of the global DNS namespace over a period of 1.5 years. Adoption is still marginal, with just 2.3% of DNSSEC-signed domains in the .com TLD using ECDSA. Nevertheless, use of ECDSA is growing, with at least one large operator leading the pack. And adoption could be up to 42% higher. As we demonstrate, there are barriers to deployment that hamper adoption. Operators wishing to deploy DNSSEC using current recommendations (with ECDSA as signing algorithm) must be mindful of this when planning their deployment.
internet measurement conference | 2017
Mattijs Jonker; Alistair King; Johannes Krupp; Christian Rossow; Anna Sperotto; Alberto Dainotti
Denial-of-Service attacks have rapidly increased in terms of frequency and intensity, steadily becoming one of the biggest threats to Internet stability and reliability. However, a rigorous comprehensive characterization of this phenomenon, and of countermeasures to mitigate the associated risks, faces many infrastructure and analytic challenges. We make progress toward this goal, by introducing and applying a new framework to enable a macroscopic characterization of attacks, attack targets, and DDoS Protection Services (DPSs). Our analysis leverages data from four independent global Internet measurement infrastructures over the last two years: backscatter traffic to a large network telescope; logs from amplification honeypots; a DNS measurement platform covering 60% of the current namespace; and a DNS-based data set focusing on DPS adoption. Our results reveal the massive scale of the DoS problem, including an eye-opening statistic that one-third of all / 24 networks recently estimated to be active on the Internet have suffered at least one DoS attack over the last two years. We also discovered that often targets are simultaneously hit by different types of attacks. In our data, Web servers were the most prominent attack target; an average of 3% of the Web sites in .com, .net, and .org were involved with attacks, daily. Finally, we shed light on factors influencing migration to a DPS.
acm special interest group on data communication | 2015
Roland van Rijswijk-Deij; Mattijs Jonker; Anna Sperotto; Aiko Pras
The Domain Name System (DNS) is part of the core infrastructure of the Internet. Tracking changes in the DNS over time provides valuable information about the evolution of the Internets infrastructure. Until now, only one large-scale approach to perform these kinds of measurements existed, passive DNS (pDNS). While pDNS is useful for applications like tracing security incidents, it does not provide sufficient information to reliably track DNS changes over time. We use a complementary approach based on active measurements, which provides a unique, comprehensive dataset on the evolution of DNS over time. Our high-performance infrastructure performs Internet-scale active measurements, currently querying over 50% of the DNS name space on a daily basis. Our infrastructure is designed from the ground up to enable big data analysis approaches on, e.g., a Hadoop cluster. With this novel approach we aim for a quantum leap in DNS-based measurement and analysis of the Internet.
integrated network management | 2015
Olivier van der Toorn; Rick Hofstede; Mattijs Jonker; Anna Sperotto
Brute-force attacks against Web site are a common area of concern, both for Web site owners and hosters. This is mainly due to the impact of potential compromises resulting therefrom, and the increased load on the underlying infrastructure. The latter may even result in a Denial-of-Service (DoS). Detecting brute-force attacks - and ultimately mitigating them - is therefore of great importance. In this paper, we take the first step in this direction, by presenting a network-based approach for detecting HTTP(S) dictionary attacks using NetFlow/IPFIX. We have developed a prototype Intrusion Detection System (IDS), released as open-source software, by means of which we can achieve accuracies close to 100%.
autonomous infrastructure management and security | 2015
Mattijs Jonker; Anna Sperotto
Over the last years, Distributed Denial-of-Service (DDoS) attacks have become an increasing threat on the Internet, with recent attacks reaching traffic volumes of up to 500 Gbps. To make matters worse, web-based facilities that offer “DDoS-as-a-service” (i.e., Booters) allow for the layman to launch attacks in the order of tens of Gbps in exchange for only a few euros. A recent development in networking is the principle of Software Defined Networking (SDN), and related technologies such as OpenFlow. In SDN, the control plane and data plane of the network are decoupled. This has several advantages, such as centralized control over forwarding decisions, dynamic updating of forwarding rules, and easier and more flexible network configuration. Given these advantages, we expect SDN to be well-suited for DDoS attack mitigation. Typical mitigation solutions, however, are not built using SDN. In this paper we propose to design and to develop an OpenFlow-based mitigation architecture for DDoS attacks. The research involves looking at the applicability of OpenFlow, as well as studying existing solutions built on other technologies. The research is as yet in its beginning phase and will contribute towards a Ph.D. thesis after four years.
conference on network and service management | 2017
Mattijs Jonker; Anna Sperotto
Denial-of-Service attacks have rapidly gained in popularity over the last decade. The increase in frequency, size, and complexity of attacks has made DDoS Protection Services (DPS) an attractive mitigation solution to which the protection of services can be outsourced. Despite a thriving market and increasing adoption of protection services, a DPS can often be bypassed, and direct attacks can be launched against the origin of a target. Many protection services leverage the Domain Name System (DNS) to protect, e.g., Web sites. When the DNS is misconfigured, the origin IP address of a target can leak to attackers, which defeats the purpose of outsourcing protection. We perform a large-scale analysis of this phenomenon by using three large data sets that cover a 16-month period: a data set of active DNS measurements; a DNS-based data set that focuses on DPS adoption; and a data set of DoS attacks inferred from backscatter traffic to a sizable darknet. We analyze nearly 11k Web sites on Alexas top 1M that outsource protection, for eight leading DPS providers. Our results show that 40% of these Web sites expose the origin in the DNS. Moreover, we show that the origin of 19% of these Web sites is targeted after outsourcing protection.
Journal of Network and Systems Management | 2017
Rick Hofstede; Mattijs Jonker; Anna Sperotto; Aiko Pras
In the early days of network and service management, researchers paid much attention to the design of management frameworks and protocols. Since then the focus of research has shifted from the development of management technologies towards the analysis of management data. From the five FCAPS areas, security of networks and services has become a key challenge. For example, brute-force attacks against Web applications, and compromises resulting thereof, are widespread. Talks with several Top-10 Web hosting companies in the Netherlands reflect that detection of these attacks is often done based on log file analysis on servers, or by deploying host-based intrusion detection systems (IDSs) and firewalls. However, such host-based solutions have several problems. In this paper we therefore investigate the feasibility of a network-based monitoring approach, which detects brute-force attacks against and compromises of Web applications, even in encrypted environments. Our approach is based on per-connection histograms of packet payload sizes in flow data that are exported using IPFIX. We validate our approach using datasets collected in the production network of a large Web hoster in the Netherlands.
integrated network management | 2015
Mattijs Jonker; Rick Hofstede; Anna Sperotto; Aiko Pras