Maureen Hand
National Renewable Energy Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maureen Hand.
Lawrence Berkeley National Laboratory | 2008
Ryan Wiser; Mark Bollinger; Galen Barbose; Kathy Belyeu; Maureen Hand; Donna Heimiller; Debra Lew; Michael Milligan; Andrew Mills; Alejandro Moreno; Walt Musial; Ric O'Connell; Kevin Porter; Zack Subin
This report--the first in what is envisioned to be an ongoing annual series--attempts to fill this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2006.
Journal of Solar Energy Engineering-transactions of The Asme | 2006
Boubekeur Boukhezzar; Houria Siguerdidjane; Maureen Hand
To maximize wind power extraction, a variable-speed wind turbine (VSWT) should operate as close as possible to its optimal power coefficient. The generator torque is used as a control input to improve wind energy capture by forcing the wind turbine (WT) to stay close to the maximum energy point. In general, current control techniques do not take into account the dynamical and stochastic aspect of both turbine and wind, leading to significant power losses. In addition, they are not robust with respect to disturbances. In order to address these weaknesses, a nonlinear approach, without wind speed measurement for VSWT control, is proposed. Nonlinear static and dynamic state feedback controllers with wind speed estimator are then derived. The controllers were tested with a WT simple mathematical model and are validated with an aeroelastic wind turbine simulator in the presence of disturbances and measurement noise. The results have shown better performance in comparison with existing controllers.
Archive | 2018
S. Tegen; Maureen Hand; B. Maples; Eric Lantz; P. Schwabe; A. Smith
This document provides a detailed description of NRELs levelized cost of wind energy equation, assumptions and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.
Archive | 2009
Paul Denholm; Maureen Hand; Maddalena Jackson; Sean Ong
NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.
Journal of Solar Energy Engineering-transactions of The Asme | 2001
Scott Schreck; Michael Robinson; Maureen Hand; David Simms
Horizontal axis wind turbines routinely suffer significant time varying aerodynamic loads that adversely impact structures, mechanical components, and power production. As lighter and more flexible wind turbines are designed to reduce overall cost of energy, greater accuracy and reliability will become even more crucial in future aerodynamics models. However to render calculations tractable, current modeling approaches admit various approximations that can degrade model predictive accuracy. To help understand the impact of these modeling approximations and improve future models, the current effort seeks to document and comprehend the vortex kinematics for three-dimensional, unsteady, vortex dominated flows occurring on horizontal axis wind turbine blades during non-zero yaw conditions. To experimentally characterize these flows, the National Renewable Energy Laboratory Unsteady Aerodynamics Experiment turbine was erected in the NASA Ames 80 ft×120 ft wind tunnel. Then, under strictly-controlled inflow conditions, turbine blade surface pressures and local inflow velocities were acquired at multiple radial locations. Surface pressure histories and normal force records were used to characterize dynamic stall vortex kinematics and normal forces. Stall vortices occupied approximately two-thirds of the aerodynamically active blade span and persisted for nearly one-fourth of the blade rotation cycle. Stall vortex convection varied dramatically along the blade radius, yielding pronounced dynamic stall vortex deformation. Analysis of these data revealed systematic alterations to vortex kinematics due to changes in test section speed, yaw error, and blade span location.
Wind Engineering | 2000
Maureen Hand; Mark J. Balas
Variable-speed, horizontal axis wind turbines use blade-pitch control to meet specified objectives for three regions of operation. This paper provides a guide for controller design for the constant power production regime. A simple, rigid, non-linear turbine model was used to systematically perform trade-off studies between two performance metrics. Minimization of both the deviation of the rotor speed from the desired speed and the motion of the actuator is desired. The robust nature of the proportional-integral-derivative controller is illustrated, and optimal operating conditions are determined. Because numerous simulation runs may be completed in a short time, the relationship between the two opposing metrics is easily visualized. Traditional controller design generally consists of linearizing a model about an operating point. This step was taken for two different operating points, and the systematic design approach was used. The surfaces generated by the systematic design approach using the two linear models are similar to those generated using the non-linear model. The gain values selected using either linear model-based design are similar to those selected using the non-linear model-based design. The linearization point selection does, however, affect the turbine performance. Inclusion of complex dynamics in the simulation may exacerbate the small differences evident in this study. Thus, knowledge of the design variation due to linearization point selection is important.
IEEE Power & Energy Magazine | 2013
Paul Denholm; Robert Margolis; Trieu Mai; Greg Brinkman; Easan Drury; Maureen Hand; Matthew Mowers
The decreased costs of solar technologies have led to the prospect of a move for photovoltaic (PV ) and concentrating solar power (CSP ) from niche applications to major contributors to the U.S. electricity grid. This development has motivated a number of technoeconomic analyses of the potential deployment of both PV and CSP under varying economic conditions. Two studies sponsored by the U.S. Department of Energy (DOE ) and completed in 2012 can help us understand the potential opportunities and challenges for solar deployment on a large scale. These studies evaluated both the potential mix of renewable energy technologies that could serve a large fraction of the U.S. electricity demand and the associated evolution of the U.S. grid to 2050.
IEEE Transactions on Sustainable Energy | 2014
Trieu Mai; Maureen Hand; Samuel F. Baldwin; Ryan Wiser; Greg Brinkman; Paul Denholm; Doug Arent; Gian Porro; Debra Sandor; Donna J. Hostick; Michael Milligan; Edgar DeMeo; Morgan Bazilian
This paper highlights the key results from the Renewable Electricity (RE) Futures Study. It is a detailed consideration of renewable electricity in the United States. The paper focuses on technical issues related to the operability of the U.S. electricity grid and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. The results indicate that the future U.S. electricity system that is largely powered by renewable sources is possible and the further work is warranted to investigate this clean generation pathway. The central conclusion of the analysis is that renewable electricity generation from technologies that are commercially available today, in combination with a more flexible electric system, is more than adequate to supply 80% of the total U.S. electricity generation in 2050 while meeting electricity demand on an hourly basis in every region of the United States.
ASME 2002 Wind Energy Symposium | 2002
Neil Kelley; Maureen Hand; Scott M. Larwood; Ed McKenna
The accurate numerical dynamic simulation of new large-scale wind turbine designs operating over a wide range of inflow environments is critical because it is usually impractical to test prototypes in a variety of locations. Large turbines operate in a region of the atmospheric boundary layer that currently may not be adequately simulated by present turbulence codes. In this paper, we discuss the development and use of a 42-m (137-ft) planar array of five, high-resolution sonic anemometers upwind of a 600-kW wind turbine at the National Wind Technology Center (NWTC). The objective of this experiment is to obtain simultaneously collected turbulence information from the inflow array and the corresponding structural response of the turbine. The turbulence information will be used for comparison with that predicted by currently available codes and establish any systematic differences. These results will be used to improve the performance of the turbulence simulations. The sensitivities of key elements of the turbine aeroelastic and structural response to a range of turbulence-sc aling parameters will be established for comparisons with other turbines and operating environments. In this paper, we present an overview of the experiment, and offer examples of two observed cases of inflow characteristics and turbine response collected under daytime and nighttime conditions, and compare their turbulence properties with predictions. *
ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference | 2003
Maureen Hand; Neil Kelley; Mark J. Balas
The National Renewable Energy Laboratory conducted an experiment to obtain detailed wind measurements and corresponding wind turbine measurements in order to establish a causal relationship between coherent turbulent structures and wind turbine blade fatigue loads. Data were collected for one entire wind season from October 2000 to May 2001. During this period, the wind turbine operated under atmospheric conditions that support the formation of coherent turbulent structures 31% of the time. Using the equivalent fatigue load parameter as a measure of wind turbine blade fatigue and using statistical measures of the turbulent fluctuations of the wind, general correlation between the turbulence and the wind turbine response is shown. Direct correlation cannot be resolved with 10-minute statistics for several reasons. Multiple turbulent structures can exist within a 10-minute record, and the equivalent fatigue load parameter is essentially a 10-minute statistic that cannot estimate turbine response to individual turbulent structures. Large-magnitude turbulent fluctuations in the form of instantaneous Reynolds stresses do not necessarily correspond directly to large-magnitude blade root moment amplitudes. Thus, additional work must be done to quantify the negative turbine response and to correlate this response to turbulent inflow parameters over time scales less than 10 minutes.Copyright