Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mauricio Latorre is active.

Publication


Featured researches published by Mauricio Latorre.


PLOS ONE | 2012

Genomic and SNP Analyses Demonstrate a Distant Separation of the Hospital and Community-Associated Clades of Enterococcus faecium

Jessica Galloway-Peña; Jung Hyeob Roh; Mauricio Latorre; Xiang Qin; Barbara E. Murray

Recent studies have pointed to the existence of two subpopulations of Enterococcus faecium, one containing primarily commensal/community-associated (CA) strains and one that contains most clinical or hospital-associated (HA) strains, including those classified by multi-locus sequence typing (MLST) as belonging to the CC17 group. The HA subpopulation more frequently has IS16, pathogenicity island(s), and plasmids or genes associated with antibiotic resistance, colonization, and/or virulence. Supporting the two clades concept, we previously found a 3–10% difference between four genes from HA-clade strains vs. CA-clade strains, including 5% difference between pbp5-R of ampicillin-resistant, HA strains and pbp5-S of ampicillin-sensitive, CA strains. To further investigate the core genome of these subpopulations, we studied 100 genes from 21 E. faecium genome sequences; our analyses of concatenated sequences, SNPs, and individual genes all identified two distinct groups. With the concatenated sequence, HA-clade strains differed by 0–1% from one another while CA clade strains differed from each other by 0–1.1%, with 3.5–4.2% difference between the two clades. While many strains had a few genes that grouped in one clade with most of their genes in the other clade, one strain had 28% of its genes in the CA clade and 72% in the HA clade, consistent with the predicted role of recombination in the evolution of E. faecium. Using estimates for Escherichia coli, molecular clock calculations using sSNP analysis indicate that these two clades may have diverged ≥1 million years ago or, using the higher mutation rate for Bacillus anthracis, ∼300,000 years ago. These data confirm the existence of two clades of E. faecium and show that the differences between the HA and CA clades occur at the core genomic level and long preceded the modern antibiotic era.


Research in Microbiology | 2014

A new genome of Acidithiobacillus thiooxidans provides insights into adaptation to a bioleaching environment.

Dante Travisany; María Paz Cortés; Mauricio Latorre; Alex Di Genova; Marko Budinich; Roberto A. Bobadilla-Fazzini; Pilar Parada; Mauricio González; Alejandro Maass

Acidithiobacillus thiooxidans is a sulfur oxidizing acidophilic bacterium found in many sulfur-rich environments. It is particularly interesting due to its role in bioleaching of sulphide minerals. In this work, we report the genome sequence of At. thiooxidans Licanantay, the first strain from a copper mine to be sequenced and currently used in bioleaching industrial processes. Through comparative genomic analysis with two other At. thiooxidans non-metal mining strains (ATCC 19377 and A01) we determined that these strains share a large core genome of 2109 coding sequences and a high average nucleotide identity over 98%. Nevertheless, the presence of 841 strain-specific genes (absent in other At. thiooxidans strains) suggests a particular adaptation of Licanantay to its specific biomining environment. Among this group, we highlight genes encoding for proteins involved in heavy metal tolerance, mineral cell attachment and cysteine biosynthesis. Several of these genes were located near genetic motility genes (e.g. transposases and integrases) in genomic regions of over 10 kbp absent in the other strains, suggesting the presence of genomic islands in the Licanantay genome probably produced by horizontal gene transfer in mining environments.


Biometals | 2010

Genome-wide transcriptome analysis of the adaptive response of Enterococcus faecalis to copper exposure

Angélica Reyes-Jara; Mauricio Latorre; Guadalupe López; Agathe Bourgogne; Barbara E. Murray; Verónica Cambiazo; Mauricio González

In this work we investigated the adaptive response of E. faecalis to Cu and the role of CopY, a Cu-dependent repressor, in the regulation of Cu metabolism. In doing so, we examined the whole-genome transcriptional response of E. faecalis wild-type (WT) and a ΔcopY strain exposed to non-toxic Cu excess. The results indicated that after Cu exposure, most of the genes that displayed a significant change in their expression levels in the WT strain (135 of the 145 up-regulated genes and 115 of the 142 down-regulated genes) were also differentially expressed in the E. faecalis ΔcopY strain. This extensive overlap in the transcriptional response, suggested that additional transcription factors mediate the response of E. faecalis to Cu. As a first step to analyze this possibility, we selected among the up-regulated genes five genes encoding putative transcriptional regulators and determined their expression levels at different times after Cu exposure. The temporal expression of these regulators was different from that of copY, which reached its maximum at the earliest time measured. Nevertheless, transcription elongation factor GreA, and members of Rrf2, Cro/CI and SorC/DeoR transcription factor families were induced shortly after Cu exposure, suggesting that these proteins are able to complement the role of CopY in the regulatory network activated by Cu. To our knowledge, this is the first report on the global transcriptional response to Cu in a member of this taxonomic group.


Bioresource Technology | 2016

The bioleaching potential of a bacterial consortium

Mauricio Latorre; María Paz Cortés; Dante Travisany; Alex Di Genova; Marko Budinich; Angélica Reyes-Jara; Christian Hödar; Mauricio González; Pilar Parada; Roberto A. Bobadilla-Fazzini; Verónica Cambiazo; Alejandro Maass

This work presents the molecular foundation of a consortium of five efficient bacteria strains isolated from copper mines currently used in state of the art industrial-scale biotechnology. The strains Acidithiobacillus thiooxidans Licanantay, Acidiphilium multivorum Yenapatur, Leptospirillum ferriphilum Pañiwe, Acidithiobacillus ferrooxidans Wenelen and Sulfobacillus thermosulfidooxidans Cutipay were selected for genome sequencing based on metal tolerance, oxidation activity and bioleaching of copper efficiency. An integrated model of metabolic pathways representing the bioleaching capability of this consortium was generated. Results revealed that greater efficiency in copper recovery may be explained by the higher functional potential of L. ferriphilum Pañiwe and At. thiooxidans Licanantay to oxidize iron and reduced inorganic sulfur compounds. The consortium had a greater capacity to resist copper, arsenic and chloride ion compared to previously described biomining strains. Specialization and particular components in these bacteria provided the consortium a greater ability to bioleach copper sulfide ores.


Journal of Nutritional Biochemistry | 2015

Nutrigenomics analysis reveals that copper deficiency and dietary sucrose up-regulate inflammation, fibrosis and lipogenic pathways in a mature rat model of nonalcoholic fatty liver disease ☆,☆☆,★

Savannah Tallino; Megan Duffy; Martina Ralle; María Paz Cortés; Mauricio Latorre; Jason L. Burkhead

Nonalcoholic fatty liver disease (NAFLD) prevalence is increasing worldwide, with the affected US population estimated near 30%. Diet is a recognized risk factor in the NAFLD spectrum, which includes nonalcoholic steatohepatitis (NASH) and fibrosis. Low hepatic copper (Cu) was recently linked to clinical NAFLD/NASH severity. Simple sugar consumption including sucrose and fructose is implicated in NAFLD, while consumption of these macronutrients also decreases liver Cu levels. Though dietary sugar and low Cu are implicated in NAFLD, transcript-level responses that connect diet and pathology are not established. We have developed a mature rat model of NAFLD induced by dietary Cu deficiency, human-relevant high sucrose intake (30% w/w) or both factors in combination. Compared to the control diet with adequate Cu and 10% (w/w) sucrose, rats fed either high-sucrose or low-Cu diet had increased hepatic expression of genes involved in inflammation and fibrogenesis, including hepatic stellate cell activation, while the combination of diet factors also increased ATP citrate lyase and fatty acid synthase gene transcription (fold change > 2, P < 0.02). Low dietary Cu decreased hepatic and serum Cu (P ≤ 0.05), promoted lipid peroxidation and induced NAFLD-like histopathology, while the combined factors also induced fasting hepatic insulin resistance and liver damage. Neither low Cu nor 30% sucrose in the diet led to enhanced weight gain. Taken together, transcript profiles, histological and biochemical data indicate that low Cu and high sucrose promote hepatic gene expression and physiological responses associated with NAFLD and NASH, even in the absence of obesity or severe steatosis.


Biometals | 2012

Transcriptomic response of Enterococcus faecalis to iron excess.

Guadalupe López; Mauricio Latorre; Angélica Reyes-Jara; Verónica Cambiazo; Mauricio González

Iron is an essential nutrient for sustaining bacterial growth; however, little is known about the molecular mechanisms that govern gene expression during the homeostatic response to iron availability. In this study we analyzed the global transcriptional response of Enterococcus faecalis to a non-toxic iron excess in order to identify the set of genes that respond to an increment of intracellular iron. Our results showed an up-regulation of transcriptional regulators of the Fur family (PerR and ZurR), the cation efflux family (CzcD) and ferredoxin, while proton-dependent Mn/Fe (MntH) transporters and the universal stress protein (UspA) were down-regulated. This indicated that E. faecalis was able to activate a transcriptional response while growing in the presence of an excess of non-toxic iron, assuring the maintenance of iron homeostasis. Gene expression analysis of E. faecalis treated with H2O2 indicated that a fraction of the transcriptional changes induced by iron appears to be mediated by oxidative stress. A comparison of our transcriptomic data with a recently reported set of differentially expressed genes in E. faecalis grown in blood, revealed an important fraction of common genes. In particular, genes associated to oxidative stress were up-regulated in both conditions, while genes encoding the iron uptake system (feo and ycl operons) were up-regulated when cells were grown in blood. This suggested that blood cultures mimic an iron deficit, and was corroborated by measuring feo and ycl expression in E. faecalis treated with the iron chelating agent 2,2-dipyridil. In summary, our group identified an adaptive transcriptional mechanism in response to metal ion stress in E. faecalis, providing a foundation for future in-depth functional studies of the iron-activated regulatory network.


Biochemical and Biophysical Research Communications | 2011

CutC is induced late during copper exposure and can modify intracellular copper content in Enterococcus faecalis

Mauricio Latorre; Felipe Olivares; Angélica Reyes-Jara; Guadalupe López; Mauricio González

Copper is a micronutrient that is required for proper metabolic functioning of most prokaryotic and eukaryotic organisms. To sustain an adequate supply of copper, a cell requires molecular mechanisms that control the metal content to avoid copper toxicity. This toxicity comes primarily from the reactivity of copper, which can lead to the generation of free radicals. In bacteria, two independent systems are responsible for maintaining the balance of copper within the cells (Cop and Cut family proteins). Previous studies describe CutC as a member of the Cut family that is probably involved in copper homeostasis. However, the role of CutC in copper homeostasis is still unclear. In this work, a homolog of CutC was studied in Enterococcus faecalis, a bacterial model for copper homeostasis. The molecular 3D model of efCutC shows the presence of triose phosphate isomerase (TIM) barrel motifs, previously described in CutC crystals from other organisms, which illustrates the conservation of amino acids with the potential ability to coordinate copper. Through quantitative real-time PCR (qPCR), it was demonstrated that efcutC expression is induced late by copper stimulus, Interestingly this transcriptional response directly correlates with a significant increase in the intracellular copper concentration when the protein is absent in the bacteria, suggesting its participation in mechanisms related to efflux of the metal. Our results describe efCutC as a protein able to respond transcriptionally to copper and to participate in the control of copper homeostasis in E. faecalis. This bacterium is the first reported organism containing a cop operon and an active member of the Cut protein family.


Bioresource Technology | 2016

Global transcriptional responses of Acidithiobacillus ferrooxidans Wenelen under different sulfide minerals

Mauricio Latorre; Nicole Ehrenfeld; María Paz Cortés; Dante Travisany; Marko Budinich; Andrés Aravena; Mauricio González; Roberto A. Bobadilla-Fazzini; Pilar Parada; Alejandro Maass

In order to provide new information about the adaptation of Acidithiobacillus ferrooxidans during the bioleaching process, the current analysis presents the first report of the global transcriptional response of the native copper mine strain Wenelen (DSM 16786) oxidized under different sulfide minerals. Microarrays were used to measure the response of At. ferrooxidans Wenelen to shifts from iron supplemented liquid cultures (reference state) to the addition of solid substrates enriched in pyrite or chalcopyrite. Genes encoding for energy metabolism showed a similar transcriptional profile for the two sulfide minerals. Interestingly, four operons related to sulfur metabolism were over-expressed during growth on a reduced sulfur source. Genes associated with metal tolerance (RND and ATPases type P) were up-regulated in the presence of pyrite or chalcopyrite. These results suggest that At. ferrooxidans Wenelen presents an efficient transcriptional system developed to respond to environmental conditions, namely the ability to withstand high copper concentrations.


Metallomics | 2014

Enterococcus faecalis reconfigures its transcriptional regulatory network activation at different copper levels

Mauricio Latorre; Jessica Galloway-Peña; Jung Hyeob Roh; Marko Budinich; Angélica Reyes-Jara; Barbara E. Murray; Alejandro Maass; Mauricio González

A global transcriptional regulatory network was generated in the pathogenic bacterium Enterococcus faecalis in order to understand how this organism can activate and coordinate its expression at different copper concentrations. The topological evaluation of the network showed common patterns described in other organisms. Integrating microarray experiments allowed the identification of two sub-networks activated at low (0.05 mM CuSO4) and high (0.5 mM CuSO4) concentrations of copper. The analysis indicates the presence of specific functionally activated modules induced by copper levels, highlighting the regulons LysR and ArgR as global regulators and CopY, Fur and LexA as local regulators. Taking advantage of the fact that E. faecalis presented a homeostatic module, we produced an in vivo intervention by removing this system from the cell without affecting the connectivity of the global transcriptional network. This strategy led us to find that this bacterium can reconfigure its gene expression to maintain cellular homeostasis, activating new modules principally related to glucose metabolism and transcriptional processes. Finally, these results position E. faecalis as the most complete and controllable systemic model organism for copper homeostasis available to date.


Biometals | 2012

Genome wide identification of Acidithiobacillus ferrooxidans (ATCC 23270) transcription factors and comparative analysis of ArsR and MerR metal regulators

Christian Hödar; Pablo Moreno; Alex Di Genova; Mauricio Latorre; Angélica Reyes-Jara; Alejandro Maass; Mauricio González; Verónica Cambiazo

Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophilic bacterium that obtains its energy from the oxidation of ferrous iron, elemental sulfur, or reduced sulfur minerals. This capability makes it of great industrial importance due to its applications in biomining. During the industrial processes, A. ferrooxidans survives to stressing circumstances in its environment, such as an extremely acidic pH and high concentration of transition metals. In order to gain insight into the organization of A. ferrooxidans regulatory networks and to provide a framework for further studies in bacterial growth under extreme conditions, we applied a genome-wide annotation procedure to identify 87 A. ferrooxidans transcription factors. We classified them into 19 families that were conserved among diverse prokaryotic phyla. Our annotation procedure revealed that A. ferrooxidans genome contains several members of the ArsR and MerR families, which are involved in metal resistance and detoxification. Analysis of their sequences revealed known and potentially new mechanism to coordinate gene-expression in response to metal availability. A. ferrooxidans inhabit some of the most metal-rich environments known, thus transcription factors identified here seem to be good candidates for functional studies in order to determine their physiological roles and to place them into A. ferrooxidans transcriptional regulatory networks.

Collaboration


Dive into the Mauricio Latorre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara E. Murray

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason L. Burkhead

University of Alaska Anchorage

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge