Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mauro Biffoni is active.

Publication


Featured researches published by Mauro Biffoni.


Nature | 2007

Identification and expansion of human colon-cancer-initiating cells

Lucia Ricci-Vitiani; Dario Lombardi; Emanuela Pilozzi; Mauro Biffoni; Matilde Todaro; Cesare Peschle; Ruggero De Maria

Colon carcinoma is the second most common cause of death from cancer. The isolation and characterization of tumorigenic colon cancer cells may help to devise novel diagnostic and therapeutic procedures. Although there is increasing evidence that a rare population of undifferentiated cells is responsible for tumour formation and maintenance, this has not been explored for colorectal cancer. Here, we show that tumorigenic cells in colon cancer are included in the high-density CD133+ population, which accounts for about 2.5% of the tumour cells. Subcutaneous injection of colon cancer CD133+ cells readily reproduced the original tumour in immunodeficient mice, whereas CD133- cells did not form tumours. Such tumours were serially transplanted for several generations, in each of which we observed progressively faster tumour growth without significant phenotypic alterations. Unlike CD133- cells, CD133+ colon cancer cells grew exponentially for more than one year in vitro as undifferentiated tumour spheres in serum-free medium, maintaining the ability to engraft and reproduce the same morphological and antigenic pattern of the original tumour. We conclude that colorectal cancer is created and propagated by a small number of undifferentiated tumorigenic CD133+ cells, which should therefore be the target of future therapies.


Cell Death & Differentiation | 2008

Identification and expansion of the tumorigenic lung cancer stem cell population.

Adriana Eramo; Fiorenza Lotti; Giovanni Sette; Emanuela Pilozzi; Mauro Biffoni; A Di Virgilio; C. Conticello; Luigi Ruco; Cesare Peschle; R De Maria

Lung carcinoma is often incurable and remains the leading cancer killer in both men and women. Recent evidence indicates that tumors contain a small population of cancer stem cells that are responsible for tumor maintenance and spreading. The identification of the tumorigenic population that sustains lung cancer may contribute significantly to the development of effective therapies. Here, we found that the tumorigenic cells in small cell and non-small cell lung cancer are a rare population of undifferentiated cells expressing CD133, an antigen present in the cell membrane of normal and cancer-primitive cells of the hematopoietic, neural, endothelial and epithelial lineages. Lung cancer CD133+ cells were able to grow indefinitely as tumor spheres in serum-free medium containing epidermal growth factor and basic fibroblast growth factor. The injection of 104 lung cancer CD133+ cells in immunocompromised mice readily generated tumor xenografts phenotypically identical to the original tumor. Upon differentiation, lung cancer CD133+ cells acquired the specific lineage markers, while loosing the tumorigenic potential together with CD133 expression. Thus, lung cancer contains a rare population of CD133+ cancer stem-like cells able to self-renew and generates an unlimited progeny of non-tumorigenic cells. Molecular and functional characterization of such a tumorigenic population may provide valuable information to be exploited in the clinical setting.


Nature Medicine | 2008

The miR-15a – miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities

Désirée Bonci; Valeria Coppola; Antonio Addario; Raffaella Giuffrida; Lorenzo Memeo; Leonardo D'Urso; Alfredo Pagliuca; Mauro Biffoni; Catherine Labbaye; Monica Bartucci; Giovanni Muto; Cesare Peschle; Ruggero De Maria

MicroRNAs (miRNAs) are noncoding small RNAs that repress protein translation by targeting specific messenger RNAs. miR-15a and miR-16-1 act as putative tumor suppressors by targeting the oncogene BCL2. These miRNAs form a cluster at the chromosomal region 13q14, which is frequently deleted in cancer. Here, we report that the miR-15a and miR-16-1 cluster targets CCND1 (encoding cyclin D1) and WNT3A, which promotes several tumorigenic features such as survival, proliferation and invasion. In cancer cells of advanced prostate tumors, the miR-15a and miR-16 level is significantly decreased, whereas the expression of BCL2, CCND1 and WNT3A is inversely upregulated. Delivery of antagomirs specific for miR-15a and miR-16 to normal mouse prostate results in marked hyperplasia, and knockdown of miR-15a and miR-16 promotes survival, proliferation and invasiveness of untransformed prostate cells, which become tumorigenic in immunodeficient NOD-SCID mice. Conversely, reconstitution of miR-15a and miR-16-1 expression results in growth arrest, apoptosis and marked regression of prostate tumor xenografts. Altogether, we propose that miR-15a and miR-16 act as tumor suppressor genes in prostate cancer through the control of cell survival, proliferation and invasion. These findings have therapeutic implications and may be exploited for future treatment of prostate cancer.


Cell Stem Cell | 2014

CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis.

Matilde Todaro; Miriam Gaggianesi; Veronica Catalano; Antonina Benfante; Flora Iovino; Mauro Biffoni; Tiziana Apuzzo; Isabella Sperduti; Silvia Volpe; Gianfranco Cocorullo; Gaspare Gulotta; Francesco Dieli; Ruggero De Maria; Giorgio Stassi

Cancer stem cells drive tumor formation and metastasis, but how they acquire metastatic traits is not well understood. Here, we show that all colorectal cancer stem cells (CR-CSCs) express CD44v6, which is required for their migration and generation of metastatic tumors. CD44v6 expression is low in primary tumors but demarcated clonogenic CR-CSC populations. Cytokines hepatocyte growth factor (HGF), osteopontin (OPN), and stromal-derived factor 1α (SDF-1), secreted from tumor associated cells, increase CD44v6 expression in CR-CSCs by activating the Wnt/β-catenin pathway, which promotes migration and metastasis. CD44v6(-) progenitor cells do not give rise to metastatic lesions but, when treated with cytokines, acquire CD44v6 expression and metastatic capacity. Importantly, phosphatidylinositol 3-kinase (PI3K) inhibition selectively killed CD44v6 CR-CSCs and reduced metastatic growth. In patient cohorts, low levels of CD44v6 predict increased probability of survival. Thus, the metastatic process in colorectal cancer is initiated by CSCs through the expression of CD44v6, which is both a functional biomarker and therapeutic target.


Nature Cell Biology | 2008

A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis

Catherine Labbaye; Isabella Spinello; Maria Teresa Quaranta; Elvira Pelosi; Luca Pasquini; Eleonora Petrucci; Mauro Biffoni; Eugenia Rosa Nuzzolo; Monia Billi; Robin Foà; Ercole Brunetti; Francesco Grignani; Ugo Testa; Cesare Peschle

MicroRNAs (miRNAs or miRs) regulate diverse normal and abnormal cell functions. We have identified a regulatory pathway in normal megakaryopoiesis, involving the PLZF transcription factor, miR-146a and the SDF-1 receptor CXCR4. In leukaemic cell lines PLZF overexpression downmodulated miR-146a and upregulated CXCR4 protein, whereas PLZF knockdown induced the opposite effects. In vitro assays showed that PLZF interacts with and inhibits the miR-146a promoter, and that miR-146a targets CXCR4 mRNA, impeding its translation. In megakaryopoietic cultures of CD34+ progenitors, PLZF was upregulated, whereas miR-146a expression decreased and CXCR4 protein increased. MiR-146a overexpression and PLZF or CXCR4 silencing impaired megakaryocytic (Mk) proliferation, differentiation and maturation, as well as Mk colony formation. Mir-146a knockdown induced the opposite effects. Rescue experiments indicated that the effects of PLZF and miR-146a are mediated by miR-146a and CXCR4, respectively. Our data indicate that megakaryopoiesis is controlled by a cascade pathway, in which PLZF suppresses miR-146a transcription and thereby activates CXCR4 translation.


Oncogene | 2011

Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer

Valeria Coppola; Antonio Addario; M Patrizii; Marcello Maugeri-Saccà; Lorenzo Memeo; Cristina Colarossi; Federica Francescangeli; Mauro Biffoni; Devis Collura; Arianna Giacobbe; Leonardo D'Urso; Mario Falchi; M A Venneri; G. Muto; R De Maria; Désirée Bonci

The interaction between cancer cells and microenvironment has a critical role in tumor development and progression. Although microRNAs regulate all the major biological mechanisms, their influence on tumor microenvironment is largely unexplored. Here, we investigate the role of microRNAs in the tumor-supportive capacity of stromal cells. We demonstrated that miR-15 and miR-16 are downregulated in fibroblasts surrounding the prostate tumors of the majority of 23 patients analyzed. Such downregulation of miR-15 and miR-16 in cancer-associated fibroblasts (CAFs) promoted tumor growth and progression through the reduced post-transcriptional repression of Fgf-2 and its receptor Fgfr1, which act on both stromal and tumor cells to enhance cancer cell survival, proliferation and migration. Moreover, reconstitution of miR-15 and miR-16 impaired considerably the tumor-supportive capability of stromal cells in vitro and in vivo. Our data suggest a molecular circuitry in which miR-15 and miR-16 and their correlated targets cooperate to promote tumor expansion and invasiveness through the concurrent activity on stromal and cancer cells, thus providing further support to the development of therapies aimed at reconstituting miR-15 and miR-16 in advanced prostate cancer.


The EMBO Journal | 2010

Hedgehog controls neural stem cells through p53-independent regulation of Nanog

Agnese Po; Elisabetta Ferretti; Evelina Miele; Enrico De Smaele; Arianna Paganelli; Gianluca Canettieri; Sonia Coni; Lucia Di Marcotullio; Mauro Biffoni; Luca Massimi; Concezio Di Rocco; Isabella Screpanti; Alberto Gulino

Hedgehog (Hh) pathway has a pivotal function in development and tumorigenesis, processes sustained by stem cells (SCs). The transcription factor Nanog controls stemness acting as a key determinant of both embryonic SC self‐renewal and differentiated somatic cells reprogramming to pluripotency, in concert with the loss of the oncosuppressor p53. How Nanog is regulated by microenvironmental signals in postnatal SC niches has been poorly investigated. Here, we show that Nanog is highly expressed in SCs from postnatal cerebellum and medulloblastoma, and acts as a critical mediator of Hh‐driven self‐renewal. Indeed, the downstream effectors of Hh activity, Gli1 and Gli2, bind to Nanog‐specific cis‐regulatory sequences both in mouse and human SCs. Loss of p53, a key event promoting cell stemness, activates Hh signalling, thereby contributing to Nanog upregulation. Conversely, Hh downregulates p53 but does not require p53 to control Nanog. Our data reveal a mechanism for the function of Hh in the control of stemness that represents a crucial component of an integrated circuitry determining cell fate decision and involved in the maintenance of cancer SCs.


Oncogene | 2015

TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells.

Monica Bartucci; Rosanna Dattilo; C Moriconi; Alfredo Pagliuca; Marcella Mottolese; Giulia Federici; A Di Benedetto; Matilde Todaro; Giorgio Stassi; Francesca Sperati; Maria Ida Amabile; Emanuela Pilozzi; M Patrizii; Mauro Biffoni; Marcello Maugeri-Saccà; S Piccolo; R De Maria

Metastatic growth in breast cancer (BC) has been proposed as an exclusive property of cancer stem cells (CSCs). However, formal proof of their identity as cells of origin of recurrences at distant sites and the molecular events that may contribute to tumor cell dissemination and metastasis development are yet to be elucidated. In this study, we analyzed a set of patient-derived breast cancer stem cell (BCSC) lines. We found that in vitro BCSCs exhibit a higher chemoresistance and migratory potential when compared with differentiated, nontumorigenic, breast cancer cells (dBCCs). By developing an in vivo metastatic model simulating the disease of patients with early BC, we observed that BCSCs is the only cell population endowed with metastatic potential. Gene-expression profile studies comparing metastagenic and non-metastagenic cells identified TAZ, a transducer of the Hippo pathway and biomechanical cues, as a central mediator of BCSCs metastatic ability involved in their chemoresistance and tumorigenic potential. Overexpression of TAZ in low-expressing dBCCs induced cell transformation and conferred tumorigenicity and migratory activity. Conversely, loss of TAZ in BCSCs severely impaired metastatic colonization and chemoresistance. In clinical data from 99 BC patients, high expression levels of TAZ were associated with shorter disease-free survival in multivariate analysis, thus indicating that TAZ may represent a novel independent negative prognostic factor. Overall, this study designates TAZ as a novel biomarker and a possible therapeutic target for BC.


Haematologica | 2009

MicroRNA 223-dependent expression of LMO2 regulates normal erythropoiesis

Nadia Felli; Francesca Pedini; Paolo Romania; Mauro Biffoni; Ornella Morsilli; Germana Castelli; Simona Santoro; Simona Chicarella; Antonio Sorrentino; Cesare Peschle; Giovanna Marziali

Erythropoiesis is tightly controlled by transcription factors, one of which is the LIM domain-only protein LMO2, but little is still known of the involvement of microRNAs (miRs) in erythroid cell development. This article shows that miR-223 downregulates the expression of LMO2 and thereby blocks erythroid differentiation. Se related perspective article on page 447. Background MicroRNAs are small non-coding RNAs that regulate gene expression through mRNA degradation or translational inhibition. MicroRNAs are emerging as key regulators of normal hematopoiesis and hematologic malignancies. Several miRNAs are differentially expressed during hematopoiesis and their specific expression regulates key functional proteins involved in hematopoietic lineage differentiation. This study focused on the functional role of microRNA-223 (miR-223) on erythroid differentiation. Design and Methods Purified cord blood CD34+ hematopoietic progenitor cells were grown in strictly controlled conditions in the presence of saturating dosage of erythropoietin to selectively induce erythroid differentiation. The effects of enforced expression of miR-223 in unilin-eage erythroid cultures were evaluated in liquid phase culture experiments and clonogenic studies. Results In unilineage erythroid culture of cord blood CD34+ hematopoietic progenitor cells miR-223 is down-regulated, whereas LMO2, an essential protein for erythroid differentiation, is up-regulated. Functional studies showed that enforced expression of miR-223 reduces the mRNA and protein levels of LMO2, by binding to LMO2 3’ UTR, and impairs differentiation of erythroid cells. Accordingly, knockdown of LMO2 by short interfering RNA mimics the action of miR-223. Furthermore, hematopoietic progenitor cells transduced with miR-223 showed a significant reduction of their erythroid clonogenic capacity, suggesting that downmodulation of this miRNA is required for erythroid progenitor recruitment and commitment. Conclusions These results show that the decline of miR-223 is an important event for erythroid differentiation that leads to the expansion of erythroblast cells at least partially mediated by unblocking LMO2 protein expression.


Oncogene | 2013

Analysis of the combined action of miR-143 and miR-145 on oncogenic pathways in colorectal cancer cells reveals a coordinate program of gene repression

Alfredo Pagliuca; C Valvo; Eros Fabrizi; S di Martino; Mauro Biffoni; Daniele Runci; Silvia Forte; R De Maria; Lucia Ricci-Vitiani

MicroRNAs (miRNAs) from the gene cluster miR-143–145 are diminished in cells of colorectal tumor origin when compared with normal colon epithelia. Until now, no report has addressed the coordinate action of these miRNAs in colorectal cancer (CRC). In this study, we performed a comprehensive molecular and functional analysis of the miRNA cluster regulatory network. First, we evaluated proliferation, migration, anchorage-independent growth and chemoresistance in the colon tumor cell lines after miR-143 and miR-145 restoration. Then, we assessed the contribution of single genes targeted by miR-143 and miR-145 by reinforcing their expression and checking functional recovery. Restoring miR-143 and miR-145 in colon cancer cells decreases proliferation, migration and chemoresistance. We identified cluster of differentiation 44 (CD44), Kruppel-like factor 5 (KLF5), Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) and v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) as proteins targeted by miR-143 and miR-145. Their re-expression can partially revert a decrease in transformation properties caused by the overexpression of miR-143 and miR-145. In addition, we determined a set of mRNAs that are diminished after reinforcing miR-143 and miR-145 expression. The whole transcriptome analysis ascertained that downregulated transcripts are enriched in predicted target genes in a statistically significant manner. A number of additional genes, whose expression decreases as a direct or indirect consequence of miR-143 and miR-145, reveals a complex regulatory network that affects cell signaling pathways involved in transformation. In conclusion, we identified a coordinated program of gene repression by miR-143 and miR-145, in CRC, where either of the two miRNAs share a target transcript, or where the target transcripts share a common signaling pathway. Major mediators of the oncosuppression by miR-143 and miR-145 are genes belonging to the growth factor receptor–mitogen-activated protein kinase network and to the p53 signaling pathway.

Collaboration


Dive into the Mauro Biffoni's collaboration.

Top Co-Authors

Avatar

Ruggero De Maria

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Cesare Peschle

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Lucia Ricci-Vitiani

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Michele Signore

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Ugo Testa

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Roberto Pallini

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

R De Maria

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Alfredo Pagliuca

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Ann Zeuner

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Eleonora Petrucci

Istituto Superiore di Sanità

View shared research outputs
Researchain Logo
Decentralizing Knowledge