Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruggero De Maria is active.

Publication


Featured researches published by Ruggero De Maria.


Nature | 2007

Identification and expansion of human colon-cancer-initiating cells

Lucia Ricci-Vitiani; Dario Lombardi; Emanuela Pilozzi; Mauro Biffoni; Matilde Todaro; Cesare Peschle; Ruggero De Maria

Colon carcinoma is the second most common cause of death from cancer. The isolation and characterization of tumorigenic colon cancer cells may help to devise novel diagnostic and therapeutic procedures. Although there is increasing evidence that a rare population of undifferentiated cells is responsible for tumour formation and maintenance, this has not been explored for colorectal cancer. Here, we show that tumorigenic cells in colon cancer are included in the high-density CD133+ population, which accounts for about 2.5% of the tumour cells. Subcutaneous injection of colon cancer CD133+ cells readily reproduced the original tumour in immunodeficient mice, whereas CD133- cells did not form tumours. Such tumours were serially transplanted for several generations, in each of which we observed progressively faster tumour growth without significant phenotypic alterations. Unlike CD133- cells, CD133+ colon cancer cells grew exponentially for more than one year in vitro as undifferentiated tumour spheres in serum-free medium, maintaining the ability to engraft and reproduce the same morphological and antigenic pattern of the original tumour. We conclude that colorectal cancer is created and propagated by a small number of undifferentiated tumorigenic CD133+ cells, which should therefore be the target of future therapies.


Nature Medicine | 2008

The miR-15a – miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities

Désirée Bonci; Valeria Coppola; Antonio Addario; Raffaella Giuffrida; Lorenzo Memeo; Leonardo D'Urso; Alfredo Pagliuca; Mauro Biffoni; Catherine Labbaye; Monica Bartucci; Giovanni Muto; Cesare Peschle; Ruggero De Maria

MicroRNAs (miRNAs) are noncoding small RNAs that repress protein translation by targeting specific messenger RNAs. miR-15a and miR-16-1 act as putative tumor suppressors by targeting the oncogene BCL2. These miRNAs form a cluster at the chromosomal region 13q14, which is frequently deleted in cancer. Here, we report that the miR-15a and miR-16-1 cluster targets CCND1 (encoding cyclin D1) and WNT3A, which promotes several tumorigenic features such as survival, proliferation and invasion. In cancer cells of advanced prostate tumors, the miR-15a and miR-16 level is significantly decreased, whereas the expression of BCL2, CCND1 and WNT3A is inversely upregulated. Delivery of antagomirs specific for miR-15a and miR-16 to normal mouse prostate results in marked hyperplasia, and knockdown of miR-15a and miR-16 promotes survival, proliferation and invasiveness of untransformed prostate cells, which become tumorigenic in immunodeficient NOD-SCID mice. Conversely, reconstitution of miR-15a and miR-16-1 expression results in growth arrest, apoptosis and marked regression of prostate tumor xenografts. Altogether, we propose that miR-15a and miR-16 act as tumor suppressor genes in prostate cancer through the control of cell survival, proliferation and invasion. These findings have therapeutic implications and may be exploited for future treatment of prostate cancer.


Nature | 1999

Negative regulation of erythropoiesis by caspase-mediated cleavage of GATA-1.

Ruggero De Maria; Ann Zeuner; Adriana Eramo; Cristina Domenichelli; Désirée Bonci; Francesco Grignani; Srinivasa M. Srinivasula; Emad S. Alnemri; Ugo Testa; Cesare Peschle

The production of red blood cells follows the sequential formation of proerythroblasts and basophilic, polychromatophilic and orthochromatic erythroblasts, and is promoted by the hormone erythropoietin (Epo) in response to tissue hypoxia. However, little is known about the negative regulation of this process. Death receptors are a family of surface molecules that trigger caspase activation and apoptosis in a variety of cell types. Here we show that immature erythroid cells express several death receptors whose ligands are produced by mature erythroblasts. Exposure of erythroid progenitors to mature erythroblasts or death-receptor ligands resulted in caspase-mediated degradation of the transcription factor GATA-1, which is associated with impaired erythroblast development. Expression of a caspase-resistant GATA-1 mutant, but not of the wild-type gene, completely restored erythroid expansion and differentiation following the triggering of death receptors, indicating that there is regulatory feedback between mature and immature erythroblasts through caspase-mediated cleavage of GATA-1. Similarly, erythropoiesis blockade following Epo deprivation was largely prevented by the expression of caspase-inhibitory proteins or caspase-resistant GATA-1 in erythroid progenitors. Caspase-mediated cleavage of GATA-1 may therefore represent an important negative control mechanism in erythropoiesis.


Nature Reviews Cancer | 2012

Cancer stem cell definitions and terminology: the devil is in the details

Peter Valent; Dominique Bonnet; Ruggero De Maria; Tsvee Lapidot; Mhairi Copland; Junia V. Melo; Christine Chomienne; Fumihiko Ishikawa; Jan Jacob Schuringa; Giorgio Stassi; Brian J. P. Huntly; Harald Herrmann; Jean Soulier; Alexander Roesch; G.J. Schuurhuis; Stefan Wöhrer; Michel Arock; Johannes Zuber; Sabine Cerny-Reiterer; Hans Erik Johnsen; Michael Andreeff; Connie J. Eaves

The cancer stem cell (CSC) concept has important therapeutic implications, but its investigation has been hampered both by a lack of consistency in the terms used for these cells and by how they are defined. Evidence of their heterogeneous origins, frequencies and their genomic, as well as their phenotypic and functional, properties has added to the confusion and has fuelled new ideas and controversies. Participants in The Year 2011 Working Conference on CSCs met to review these issues and to propose a conceptual and practical framework for CSC terminology. More precise reporting of the parameters that are used to identify CSCs and to attribute responses to them is also recommended as key to accelerating an understanding of their biology and developing more effective methods for their eradication in patients.


Clinical Cancer Research | 2008

Cancer Stem Cell Analysis and Clinical Outcome in Patients with Glioblastoma Multiforme

Roberto Pallini; Lucia Ricci-Vitiani; Giuseppe Luigi Banna; Michele Signore; Dario Lombardi; Matilde Todaro; Giorgio Stassi; Maurizio Martini; Giulio Maira; Luigi Maria Larocca; Ruggero De Maria

Purpose: Cancer stem cells (CSC) are thought to represent the population of tumorigenic cells responsible for tumor development. The stem cell antigen CD133 identifies such a tumorigenic population in a subset of glioblastoma patients. We conducted a prospective study to explore the prognostic potential of CSC analysis in glioblastoma patients. Experimental Design: We investigated the relationship between the in vitro growth potential of glioblastoma CSCs and patient death or disease progression in tumors of 44 consecutive glioblastoma patients treated with complete or partial tumorectomy followed by radiotherapy combined with temozolomide treatment. Moreover, we evaluated by immunohistochemistry and immunofluorescence the prognostic value of the relative presence of CD133+ and CD133+/Ki67+ cells in patient tumors. Results:In vitro CSC generation and the presence of ≥2% CD133+ cells in tumor lesions negatively correlated with overall (P = 0.0001 and 0.02, respectively) and progression-free (P = 0.0002 and 0.01, respectively) survival of patients. A very poor overall (P = 0.007) and progression-free (P = 0.001) survival was observed among patients whose tumors contained CD133+ cells expressing Ki67. Taking into account symptom duration, surgery type, age, O6-methylguanine-DNA methyltransferase promoter methylation, and p53 status, generation of CSCs and CD133/Ki67 coexpression emerged as highly significant independent prognostic factors, with an adjusted hazard ratio of 2.92 (95% confidence interval, 1.37-6.2; P = 0.005) and 4.48 (95% confidence interval, 1.68-11.9; P = 0.003), respectively. Conclusions: The analysis of CSCs may predict the survival of glioblastoma patients. In vitro CSC generation and presence of CD133+/Ki67+ cells are two considerable prognostic factors of disease progression and poor clinical outcome.


Cell Stem Cell | 2014

CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis.

Matilde Todaro; Miriam Gaggianesi; Veronica Catalano; Antonina Benfante; Flora Iovino; Mauro Biffoni; Tiziana Apuzzo; Isabella Sperduti; Silvia Volpe; Gianfranco Cocorullo; Gaspare Gulotta; Francesco Dieli; Ruggero De Maria; Giorgio Stassi

Cancer stem cells drive tumor formation and metastasis, but how they acquire metastatic traits is not well understood. Here, we show that all colorectal cancer stem cells (CR-CSCs) express CD44v6, which is required for their migration and generation of metastatic tumors. CD44v6 expression is low in primary tumors but demarcated clonogenic CR-CSC populations. Cytokines hepatocyte growth factor (HGF), osteopontin (OPN), and stromal-derived factor 1α (SDF-1), secreted from tumor associated cells, increase CD44v6 expression in CR-CSCs by activating the Wnt/β-catenin pathway, which promotes migration and metastasis. CD44v6(-) progenitor cells do not give rise to metastatic lesions but, when treated with cytokines, acquire CD44v6 expression and metastatic capacity. Importantly, phosphatidylinositol 3-kinase (PI3K) inhibition selectively killed CD44v6 CR-CSCs and reduced metastatic growth. In patient cohorts, low levels of CD44v6 predict increased probability of survival. Thus, the metastatic process in colorectal cancer is initiated by CSCs through the expression of CD44v6, which is both a functional biomarker and therapeutic target.


PLOS ONE | 2008

The Inhibition of the Highly Expressed Mir-221 and Mir-222 Impairs the Growth of Prostate Carcinoma Xenografts in Mice

Neri Mercatelli; Valeria Coppola; Désirée Bonci; Francesca Miele; Arianna Costantini; Marco Guadagnoli; Elena Bonanno; G. Muto; Giovanni Vanni Frajese; Ruggero De Maria; Luigi Giusto Spagnoli; Maria Giulia Farace; Silvia Anna Ciafrè

Background MiR-221 and miR-222 are two highly homologous microRNAs whose upregulation has been recently described in several types of human tumors, for some of which their oncogenic role was explained by the discovery of their target p27, a key cell cycle regulator. We previously showed this regulatory relationship in prostate carcinoma cell lines in vitro, underlying the role of miR-221/222 as inducers of proliferation and tumorigenicity. Methodology/Principal Findings Here we describe a number of in vivo approaches confirming our previous data. The ectopic overexpression of miR-221 is able, per se, to confer a high growth advantage to LNCaP-derived tumors in SCID mice. Consistently, the anti-miR-221/222 antagomir treatment of established subcutaneous tumors derived from the highly aggressive PC3 cell line, naturally expressing high levels of miR-221/222, reduces tumor growth by increasing intratumoral p27 amount; this effect is long lasting, as it is detectable as long as 25 days after the treatment. Furthermore, we provide evidence in favour of a clinical relevance of the role of miR-221/222 in prostate carcinoma, by showing their general upregulation in patient-derived primary cell lines, where we find a significant inverse correlation with p27 expression. Conclusions/Significance These findings suggest that modulating miR-221/222 levels may have a therapeutic potential in prostate carcinoma.


Cancer Research | 2010

Tumorigenic and metastatic activity of human thyroid cancer stem cells

Matilde Todaro; Flora Iovino; Vincenzo Eterno; Patrizia Cammareri; Guido Gambara; Virginia Espina; Gaspare Gulotta; Francesco Dieli; Silvia Giordano; Ruggero De Maria; Giorgio Stassi

Thyroid carcinoma is the most common endocrine malignancy and the first cause of death among endocrine cancers. We show that the tumorigenic capacity in thyroid cancer is confined in a small subpopulation of stem-like cells with high aldehyde dehydrogenase (ALDH(high)) activity and unlimited replication potential. ALDH(high) cells can be expanded indefinitely in vitro as tumor spheres, which retain the tumorigenic potential upon delivery in immunocompromised mice. Orthotopic injection of minute numbers of thyroid cancer stem cells recapitulates the behavior of the parental tumor, including the aggressive metastatic features of undifferentiated thyroid carcinomas, which are sustained by constitutive activation of cMet and Akt in thyroid cancer stem cells. The identification of tumorigenic and metastagenic thyroid cancer cells may provide unprecedented preclinical tools for development and preclinical validation of novel targeted therapies.


Endocrine-related Cancer | 2010

MicroRNAs and prostate cancer

Valeria Coppola; Ruggero De Maria; Désirée Bonci

Despite much progress in prostate cancer management, new diagnostic, prognostic and therapeutic tools are needed to predict disease severity, choose among the available treatments and establish more effective therapies for advanced prostate cancer. In the last few years, compelling evidence has documented the role of microRNAs as new broad-spectrum oncogenes or tumour suppressor genes, thus their use as diagnostic, prognostic and therapeutic biomolecules is envisaged. This review extensively and critically summarizes the current knowledge about microRNA deregulation in prostate cancer disease, underlining present limits and future perspectives.


Clinical Cancer Research | 2011

Cancer Stem Cells and Chemosensitivity

Marcello Maugeri-Saccà; Paolo Vigneri; Ruggero De Maria

Cancer lethality is mainly due to the onset of distant metastases and refractoriness to chemotherapy. Thus, the development of molecular targeted agents that can restore or increase chemosensitivity will provide valuable therapeutic options for cancer patients. Growing evidence indicates that a cellular subpopulation with stem cell–like features, commonly referred to as cancer stem cells (CSCs), is critical for tumor generation and maintenance. Recent advances in stem cell biology are revealing that this cellular fraction shares many properties with normal adult stem cells and is able to propagate the parental tumor in animal models. CSCs seem to be protected against widely used chemotherapeutic agents by means of different mechanisms, such as a marked proficiency in DNA damage repair, high expression of ATP-binding cassette drug transporters, and activation of PI3K/AKT and Wnt pathways. Moreover, microenvironmental stimuli such as those involved in the epithelial-mesenchymal transition and hypoxia indirectly contribute to chemoresistance by inducing in cancer cells a stem-like phenotype. Understanding how CSCs overcome chemotherapy-induced death stimuli, and integrating such knowledge into clinical research methodology, has become a priority in the process of identifying innovative therapeutic strategies aimed at improving the outcome of cancer patients. Clin Cancer Res; 17(15); 4942–7. ©2011 AACR.

Collaboration


Dive into the Ruggero De Maria's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maddalena Barba

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Laura Pizzuti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Lucia Ricci-Vitiani

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adriana Eramo

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Mauro Biffoni

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Roberto Pallini

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge