Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mauro Costa-Mattioli is active.

Publication


Featured researches published by Mauro Costa-Mattioli.


Neuron | 2009

Translational Control of Long-Lasting Synaptic Plasticity and Memory

Mauro Costa-Mattioli; Wayne S. Sossin; Eric Klann; Nahum Sonenberg

Long-lasting forms of synaptic plasticity and memory are dependent on new protein synthesis. Recent advances obtained from genetic, physiological, pharmacological, and biochemical studies provide strong evidence that translational control plays a key role in regulating long-term changes in neural circuits and thus long-term modifications in behavior. Translational control is important for regulating both general protein synthesis and synthesis of specific proteins in response to neuronal activity. In this review, we summarize and discuss recent progress in the field and highlight the prospects for better understanding of long-lasting changes in synaptic strength, learning, and memory and implications for neurological diseases.


Cell | 2008

The Fragile X Syndrome Protein Represses Activity-Dependent Translation through CYFIP1, a New 4E-BP

Ilaria Napoli; Valentina Mercaldo; Pietro Pilo Boyl; Boris Eleuteri; Francesca Zalfa; Silvia De Rubeis; Daniele Di Marino; Evita Mohr; Marzia Massimi; Mattia Falconi; Walter Witke; Mauro Costa-Mattioli; Nahum Sonenberg; Tilmann Achsel; Claudia Bagni

Strong evidence indicates that regulated mRNA translation in neuronal dendrites underlies synaptic plasticity and brain development. The fragile X mental retardation protein (FMRP) is involved in this process; here, we show that it acts by inhibiting translation initiation. A binding partner of FMRP, CYFIP1/Sra1, directly binds the translation initiation factor eIF4E through a domain that is structurally related to those present in 4E-BP translational inhibitors. Brain cytoplasmic RNA 1 (BC1), another FMRP binding partner, increases the affinity of FMRP for the CYFIP1-eIF4E complex in the brain. Levels of proteins encoded by known FMRP target mRNAs are increased upon reduction of CYFIP1 in neurons. Translational repression is regulated in an activity-dependent manner because BDNF or DHPG stimulation of neurons causes CYFIP1 to dissociate from eIF4E at synapses, thereby resulting in protein synthesis. Thus, the translational repression activity of FMRP in the brain is mediated, at least in part, by CYFIP1.


Cell | 2007

eIF2α phosphorylation bidirectionally regulates the switch from short to long-term synaptic plasticity and memory

Mauro Costa-Mattioli; Delphine Gobert; Karine Gamache; Rodney Colina; Claudio Cuello; Wayne S. Sossin; Randal J. Kaufman; Jerry Pelletier; Kobi Rosenblum; K. Krnjević; Jean-Claude Lacaille; Karim Nader; Nahum Sonenberg

The late phase of long-term potentiation (LTP) and memory (LTM) requires new gene expression, but the molecular mechanisms that underlie these processes are not fully understood. Phosphorylation of eIF2alpha inhibits general translation but selectively stimulates translation of ATF4, a repressor of CREB-mediated late-LTP (L-LTP) and LTM. We used a pharmacogenetic bidirectional approach to examine the role of eIF2alpha phosphorylation in synaptic plasticity and behavioral learning. We show that in eIF2alpha(+/S51A) mice, in which eIF2alpha phosphorylation is reduced, the threshold for eliciting L-LTP in hippocampal slices is lowered, and memory is enhanced. In contrast, only early-LTP is evoked by repeated tetanic stimulation and LTM is impaired, when eIF2alpha phosphorylation is increased by injecting into the hippocampus a small molecule, Sal003, which prevents the dephosphorylation of eIF2alpha. These findings highlight the importance of a single phosphorylation site in eIF2alpha as a key regulator of L-LTP and LTM formation.


Nature | 2005

Translational control of hippocampal synaptic plasticity and memory by the eIF2α kinase GCN2

Mauro Costa-Mattioli; Delphine Gobert; Heather P. Harding; Barbara Herdy; Mounia Azzi; Martin A. Bruno; Michael Bidinosti; Cyrinne Ben Mamou; Edwige Marcinkiewicz; Madoka Yoshida; Hiroaki Imataka; A. Claudio Cuello; Nabil G. Seidah; Wayne S. Sossin; Jean-Claude Lacaille; David Ron; Karim Nader; Nahum Sonenberg

Studies on various forms of synaptic plasticity have shown a link between messenger RNA translation, learning and memory. Like memory, synaptic plasticity includes an early phase that depends on modification of pre-existing proteins, and a late phase that requires transcription and synthesis of new proteins. Activation of postsynaptic targets seems to trigger the transcription of plasticity-related genes. The new mRNAs are either translated in the soma or transported to synapses before translation. GCN2, a key protein kinase, regulates the initiation of translation. Here we report a unique feature of hippocampal slices from GCN2-/- mice: in CA1, a single 100-Hz train induces a strong and sustained long-term potentiation (late LTP or L-LTP), which is dependent on transcription and translation. In contrast, stimulation that elicits L-LTP in wild-type slices, such as four 100-Hz trains or forskolin, fails to evoke L-LTP in GCN2-/- slices. This aberrant synaptic plasticity is mirrored in the behaviour of GCN2-/- mice in the Morris water maze: after weak training, their spatial memory is enhanced, but it is impaired after more intense training. Activated GCN2 stimulates mRNA translation of ATF4, an antagonist of cyclic-AMP-response-element-binding protein (CREB). Thus, in the hippocampus of GCN2-/- mice, the expression of ATF4 is reduced and CREB activity is increased. Our study provides genetic, physiological, behavioural and molecular evidence that GCN2 regulates synaptic plasticity, as well as learning and memory, through modulation of the ATF4/CREB pathway.


Nature | 2008

Translational control of the innate immune response through IRF-7

Rodney Colina; Mauro Costa-Mattioli; Ryan J.O. Dowling; Maritza Jaramillo; Lee-Hwa Tai; Caroline J. Breitbach; Yvan Martineau; Ola Larsson; Liwei Rong; Yuri V. Svitkin; Andrew P. Makrigiannis; John C. Bell; Nahum Sonenberg

Transcriptional activation of cytokines, such as type-I interferons (interferon (IFN)-α and IFN-β), constitutes the first line of antiviral defence. Here we show that translational control is critical for induction of type-I IFN production. In mouse embryonic fibroblasts lacking the translational repressors 4E-BP1 and 4E-BP2, the threshold for eliciting type-I IFN production is lowered. Consequently, replication of encephalomyocarditis virus, vesicular stomatitis virus, influenza virus and Sindbis virus is markedly suppressed. Furthermore, mice with both 4E- and 4E-BP2 genes (also known as Eif4ebp1 and Eif4ebp2, respectively) knocked out are resistant to vesicular stomatitis virus infection, and this correlates with an enhanced type-I IFN production in plasmacytoid dendritic cells and the expression of IFN-regulated genes in the lungs. The enhanced type-I IFN response in 4E-BP1-/- 4E-BP2-/- double knockout mouse embryonic fibroblasts is caused by upregulation of interferon regulatory factor 7 (Irf7) messenger RNA translation. These findings highlight the role of 4E-BPs as negative regulators of type-I IFN production, via translational repression of Irf7 mRNA.


Proceedings of the National Academy of Sciences of the United States of America | 2004

A nuclear translation-like factor eIF4AIII is recruited to the mRNA during splicing and functions in nonsense-mediated decay

Maria Ferraiuolo; Chung-Sheng Lee; Lian Wee Ler; Jeanne L. Hsu; Mauro Costa-Mattioli; Ming-Juan Luo; Robin Reed; Nahum Sonenberg

In eukaryotes, a surveillance mechanism known as nonsense-mediated decay (NMD) degrades the mRNA when a premature-termination codon (PTC) is present. NMD requires translation to read the frame of the mRNA and detect the PTC. During pre-mRNA splicing, the exon–exon junction complex (EJC) is recruited to a region 20–24 nt upstream of the exon junction on the mature mRNA. The presence of a PTC upstream from the EJC elicits NMD. Eukaryotic initiation factor 4A (eIF4A) III is a nuclear protein that interacts physically or functionally with translation initiation factors eIF4G and eIF4B, respectively, and shares strikingly high identity with the initiation factors eIF4AI/II. Here we show that siRNA against eIF4AIII, but not against eIF4AI/II, inhibits NMD. Moreover, eIF4AIII, but not eIF4AI, is specifically recruited to the EJC during splicing. The observations that eIF4AIII is loaded onto the mRNA during splicing in the nucleus, has properties related to a translation initiation factor, and functions in NMD raises the possibility that eIF4AIII substitutes for eIF4AI/II during NMD.


Cell | 2016

Microbial Reconstitution Reverses Maternal Diet-Induced Social and Synaptic Deficits in Offspring

Buffington Sa; Di Prisco Gv; Auchtung Ta; Nadim J. Ajami; Joseph F. Petrosino; Mauro Costa-Mattioli

Maternal obesity during pregnancy has been associated with increased risk of neurodevelopmental disorders, including autism spectrum disorder (ASD), in offspring. Here, we report that maternal high-fat diet (MHFD) induces a shift in microbial ecology that negatively impacts offspring social behavior. Social deficits and gut microbiota dysbiosis in MHFD offspring are prevented by co-housing with offspring of mothers on a regular diet (MRD) and transferable to germ-free mice. In addition, social interaction induces synaptic potentiation (LTP) in the ventral tegmental area (VTA) of MRD, but not MHFD offspring. Moreover, MHFD offspring had fewer oxytocin immunoreactive neurons in the hypothalamus. Using metagenomics and precision microbiota reconstitution, we identified a single commensal strain that corrects oxytocin levels, LTP, and social deficits in MHFD offspring. Our findings causally link maternal diet, gut microbial imbalance, VTA plasticity, and behavior and suggest that probiotic treatment may relieve specific behavioral abnormalities associated with neurodevelopmental disorders. VIDEO ABSTRACT.


Nature Neuroscience | 2013

mTORC2 controls actin polymerization required for consolidation of long-term memory

Wei Huang; Ping Jun Zhu; Shixing Zhang; Hongyi Zhou; Loredana Stoica; Mauricio Galiano; K. Krnjević; Gregg Roman; Mauro Costa-Mattioli

A major goal of biomedical research is the identification of molecular and cellular mechanisms that underlie memory storage. Here we report a previously unknown signaling pathway that is necessary for the conversion from short- to long-term memory. The mammalian target of rapamycin (mTOR) complex 2 (mTORC2), which contains the regulatory protein Rictor (rapamycin-insensitive companion of mTOR), was discovered only recently and little is known about its function. We found that conditional deletion of Rictor in the postnatal murine forebrain greatly reduced mTORC2 activity and selectively impaired both long-term memory (LTM) and the late phase of hippocampal long-term potentiation (L-LTP). We also found a comparable impairment of LTM in dTORC2-deficient flies, highlighting the evolutionary conservation of this pathway. Actin polymerization was reduced in the hippocampus of mTORC2-deficient mice and its restoration rescued both L-LTP and LTM. Moreover, a compound that promoted mTORC2 activity converted early LTP into late LTP and enhanced LTM. Thus, mTORC2 could be a therapeutic target for the treatment of cognitive dysfunction.


Molecular and Cellular Biology | 2005

Eukaryotic Translation Initiation Factor 4E Availability Controls the Switch between Cap-Dependent and Internal Ribosomal Entry Site-Mediated Translation

Yuri V. Svitkin; Barbara Herdy; Mauro Costa-Mattioli; Anne-Claude Gingras; Brian Raught; Nahum Sonenberg

ABSTRACT Translation of m7G-capped cellular mRNAs is initiated by recruitment of ribosomes to the 5′ end of mRNAs via eukaryotic translation initiation factor 4F (eIF4F), a heterotrimeric complex comprised of a cap-binding subunit (eIF4E) and an RNA helicase (eIF4A) bridged by a scaffolding molecule (eIF4G). Internal translation initiation bypasses the requirement for the cap and eIF4E and occurs on viral and cellular mRNAs containing internal ribosomal entry sites (IRESs). Here we demonstrate that eIF4E availability plays a critical role in the switch from cap-dependent to IRES-mediated translation in picornavirus-infected cells. When both capped and IRES-containing mRNAs are present (as in intact cells or in vitro translation extracts), a decrease in the amount of eIF4E associated with the eIF4F complex elicits a striking increase in IRES-mediated viral mRNA translation. This effect is not observed in translation extracts depleted of capped mRNAs, indicating that capped mRNAs compete with IRES-containing mRNAs for translation. These data explain numerous reported observations where viral mRNAs are preferentially translated during infection.


Molecular and Cellular Biology | 2004

La autoantigen is necessary for optimal function of the poliovirus and hepatitis C virus internal ribosome entry site in vivo and in vitro.

Mauro Costa-Mattioli; Yuri V. Svitkin; Nahum Sonenberg

ABSTRACT Translation of poliovirus and hepatitis C virus (HCV) RNAs is initiated by recruitment of 40S ribosomes to an internal ribosome entry site (IRES) in the mRNA 5′ untranslated region. Translation initiation of these RNAs is stimulated by noncanonical initiation factors called IRES trans-activating factors (ITAFs). The La autoantigen is such an ITAF, but functional evidence for the role of La in poliovirus and HCV translation in vivo is lacking. Here, by two methods using small interfering RNA and a dominant-negative mutant of La, we demonstrate that depletion of La causes a dramatic reduction in poliovirus IRES function in vivo. We also show that 40S ribosomal subunit binding to HCV and poliovirus IRESs in vitro is inhibited by a dominant-negative form of La. These results provide strong evidence for a function of the La autoantigen in IRES-dependent translation and define the step of translation which is stimulated by La.

Collaboration


Dive into the Mauro Costa-Mattioli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Huang

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ping Jun Zhu

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Loredana Stoica

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andon N. Placzek

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Peter Walter

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge