Max D. Holloway
British Antarctic Survey
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Max D. Holloway.
Scientific Reports | 2016
Neil F. Glasser; Krister N. Jansson; G.A.T. Duller; Joy S. Singarayer; Max D. Holloway; Stephan Harrison
Large freshwater lakes formed in North America and Europe during deglaciation following the Last Glacial Maximum. Rapid drainage of these lakes into the Oceans resulted in abrupt perturbations in climate, including the Younger Dryas and 8.2 kyr cooling events. In the mid-latitudes of the Southern Hemisphere major glacial lakes also formed and drained during deglaciation but little is known about the magnitude, organization and timing of these drainage events and their effect on regional climate. We use 16 new single-grain optically stimulated luminescence (OSL) dates to define three stages of rapid glacial lake drainage in the Lago General Carrera/Lago Buenos Aires and Lago Cohrane/Pueyrredón basins of Patagonia and provide the first assessment of the effects of lake drainage on the Pacific Ocean. Lake drainage occurred between 13 and 8 kyr ago and was initially gradual eastward into the Atlantic, then subsequently reorganized westward into the Pacific as new drainage routes opened up during Patagonian Ice Sheet deglaciation. Coupled ocean-atmosphere model experiments using HadCM3 with an imposed freshwater surface “hosing” to simulate glacial lake drainage suggest that a negative salinity anomaly was advected south around Cape Horn, resulting in brief but significant impacts on coastal ocean vertical mixing and regional climate.
Nature Communications | 2016
Max D. Holloway; Louise C. Sime; Joy S. Singarayer; Julia C. Tindall; Pete Bunch; Paul J. Valdes
Several studies have suggested that sea-level rise during the last interglacial implies retreat of the West Antarctic Ice Sheet (WAIS). The prevalent hypothesis is that the retreat coincided with the peak Antarctic temperature and stable water isotope values from 128,000 years ago (128 ka); very early in the last interglacial. Here, by analysing climate model simulations of last interglacial WAIS loss featuring water isotopes, we show instead that the isotopic response to WAIS loss is in opposition to the isotopic evidence at 128 ka. Instead, a reduction in winter sea ice area of 65±7% fully explains the 128 ka ice core evidence. Our finding of a marked retreat of the sea ice at 128 ka demonstrates the sensitivity of Antarctic sea ice extent to climate warming.
Nature Geoscience | 2018
Hubertus Fischer; K. J. Meissner; Alan C. Mix; Nerilie J. Abram; Jacqueline Austermann; Victor Brovkin; Emilie Capron; Daniele Colombaroli; Anne-Laure Daniau; Kelsey A. Dyez; Thomas Felis; Sarah A. Finkelstein; Samuel L. Jaccard; Erin L. McClymont; Alessio Rovere; Johannes Sutter; Eric W. Wolff; Stéphane Affolter; Pepijn Bakker; Juan Antonio Ballesteros-Cánovas; Carlo Barbante; Thibaut Caley; Anders E. Carlson; Olga Churakova; Giuseppe Cortese; Brian F. Cumming; Basil A. S. Davis; Anne de Vernal; Julien Emile-Geay; Sherilyn C. Fritz
Over the past 3.5 million years, there have been several intervals when climate conditions were warmer than during the pre-industrial Holocene. Although past intervals of warming were forced differently than future anthropogenic change, such periods can provide insights into potential future climate impacts and ecosystem feedbacks, especially over centennial-to-millennial timescales that are often not covered by climate model simulations. Our observation-based synthesis of the understanding of past intervals with temperatures within the range of projected future warming suggests that there is a low risk of runaway greenhouse gas feedbacks for global warming of no more than 2 °C. However, substantial regional environmental impacts can occur. A global average warming of 1–2 °C with strong polar amplification has, in the past, been accompanied by significant shifts in climate zones and the spatial distribution of land and ocean ecosystems. Sustained warming at this level has also led to substantial reductions of the Greenland and Antarctic ice sheets, with sea-level increases of at least several metres on millennial timescales. Comparison of palaeo observations with climate model results suggests that, due to the lack of certain feedback processes, model-based climate projections may underestimate long-term warming in response to future radiative forcing by as much as a factor of two, and thus may also underestimate centennial-to-millennial-scale sea-level rise.A review of Earth system changes associated with past warmer climates provides constraints on the environmental changes that could occur under warming of 2 °C or more over pre-industrial temperatures.
Geophysical Research Letters | 2017
Max D. Holloway; Louise C. Sime; Claire S. Allen; Claus Dieter Hillenbrand; Pete Bunch; Eric W. Wolff; Paul J. Valdes
We compare multi-ice core data with δ18O model output for the early last interglacial Antarctic sea ice minimum. The spatial pattern of δ18O across Antarctica is sensitive to the spatial pattern of sea ice retreat. Local sea ice retreat increases the proportion of winter precipitation, depleting δ18O at ice core sites. However, retreat also enriches δ18O because of the reduced source-to-site distance for atmospheric vapor. The joint overall effect is for δ18O to increase as sea ice is reduced. Our data-model comparison indicates a winter sea ice retreat of 67, 59, and 43% relative to preindustrial in the Atlantic, Indian, and Pacific sectors of the Southern Ocean. A compilation of Southern Ocean sea ice proxy data provides weak support for this reconstruction. However, most published marine core sites are located too far north of the 128,000 years B.P. sea ice edge, preventing independent corroboration for this sea ice reconstruction. Plain Language Summary The Antarctic isotope and temperature maximum, which occurred approximately 128,000 years before present (B.P.) during the warmer than present last interglacial period, is associated with a major retreat of Antarctic sea ice. Understanding the details of this major sea ice retreat is crucial in order to understand the sensitivity of the Southern Hemisphere sea ice system and to evaluate the performance of climate model simulations in response to future warming. This work uses a multi-ice and ocean core data-model evaluation to assess the magnitude and spatial pattern of this sea ice retreat. Our results suggest that sea ice retreat was greatest in the Atlantic and Indian sectors of the Southern Ocean and less in the Pacific sector. These results may have had serious implications for the stability of marine terminating glaciers around the Antarctic Ice Sheet and their contribution to the last interglacial sea level rise. These results also support a hypothesized slowdown in northward ocean heat transport during the early last interglacial.
Nature Geoscience | 2018
Hubertus Fischer; K. J. Meissner; Alan C. Mix; Nerilie J. Abram; Jacqueline Austermann; Victor Brovkin; Emilie Capron; Daniele Colombaroli; Anne-Laure Daniau; Kelsey A. Dyez; Thomas Felis; Sarah A. Finkelstein; Samuel L. Jaccard; Erin L. McClymont; Alessio Rovere; Johannes Sutter; Eric W. Wolff; Stéphane Affolter; Pepijn Bakker; Juan Antonio Ballesteros-Cánovas; Carlo Barbante; Thibaut Caley; Anders E. Carlson; Olga Churakova; Giuseppe Cortese; Brian F. Cumming; Basil A. S. Davis; Anne de Vernal; Julien Emile-Geay; Sherilyn C. Fritz
In the version of this Review Article originally published, ref. 10 was mistakenly cited instead of ref. 107 at the end of the sentence: “This complexity of residual ice cover makes it likely that HTM warming was regional, rather than global, and its peak warmth thus had different timing in different locations.” In addition, for ref. 108, Scientific Reports was incorrectly given as the publication name; it should have been Scientific Data. These errors have now been corrected in the online versions.
Physics in Medicine and Biology | 2017
Stacey McGowan Holloway; Max D. Holloway; S J Thomas
Abstract In treatment planning we depend upon accurate knowledge of geometric and range uncertainties. If the uncertainty model is inaccurate then the plan will produce under-dosing of the target and/or overdosing of OAR. We aim to provide a method for which centre and site-specific population range uncertainty due to inter-fraction motion can be quantified to improve the uncertainty model in proton treatment planning. Daily volumetric MVCT data from previously treated radiotherapy patients has been used to investigate inter-fraction changes to water equivalent path-length (WEPL). Daily image-guidance scans were carried out for each patient and corrected for changes in CTV position (using rigid transformations). An effective depth algorithm was used to determine residual range changes, after corrections had been applied, throughout the treatment by comparing WEPL within the CTV at each fraction for several beam angles. As a proof of principle this method was used to quantify uncertainties for inter-fraction range changes for a sample of head and neck patients of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}
Quaternary Science Reviews | 2016
Max D. Holloway; Louise C. Sime; Joy S. Singarayer; Julia C. Tindall; Paul J. Valdes
\Sigma=3.39
Quaternary Science Reviews | 2018
Irene Malmierca-Vallet; Louise C. Sime; Julia C. Tindall; Emilie Capron; Paul J. Valdes; B. M. Vinther; Max D. Holloway
\end{document}Σ=3.39 mm, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}
Geophysical Research Letters | 2018
Max D. Holloway; Louise C. Sime; Joy S. Singarayer; Julia C. Tindall; Paul J. Valdes
\sigma = 4.72
Geophysical Research Letters | 2017
Max D. Holloway; Louise C. Sime; Claire S. Allen; Claus-Dieter Hillenbrand; Pete Bunch; Eric W. Wolff; Paul J. Valdes
\end{document}σ=4.72 mm and overall \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}