Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Max Dougherty is active.

Publication


Featured researches published by Max Dougherty.


Development | 2013

Distinct requirements for wnt9a and irf6 in extension and integration mechanisms during zebrafish palate morphogenesis

Max Dougherty; George Kamel; Michael Grimaldi; Lisa Gfrerer; Valeriy Shubinets; Renee Ethier; Graham Hickey; Robert A. Cornell; Eric C. Liao

Development of the palate in vertebrates involves cranial neural crest migration, convergence of facial prominences and extension of the cartilaginous framework. Dysregulation of palatogenesis results in orofacial clefts, which represent the most common structural birth defects. Detailed analysis of zebrafish palatogenesis revealed distinct mechanisms of palatal morphogenesis: extension, proliferation and integration. We show that wnt9a is required for palatal extension, wherein the chondrocytes form a proliferative front, undergo morphological change and intercalate to form the ethmoid plate. Meanwhile, irf6 is required specifically for integration of facial prominences along a V-shaped seam. This work presents a mechanistic analysis of palate morphogenesis in a clinically relevant context.


Chemistry & Biology | 2014

Neural Crest Development and Craniofacial Morphogenesis Is Coordinated by Nitric Oxide and Histone Acetylation

Yawei Kong; Michael Grimaldi; Eugene Curtin; Max Dougherty; Charles K. Kaufman; Richard M. White; Leonard I. Zon; Eric C. Liao

Cranial neural crest (CNC) cells are patterned and coalesce to facial prominences that undergo convergence and extension to generate the craniofacial form. We applied a chemical genetics approach to identify pathways that regulate craniofacial development during embryogenesis. Treatment with the nitric oxide synthase inhibitor 1-(2-[trifluoromethyl] phenyl) imidazole (TRIM) abrogated first pharyngeal arch structures and induced ectopic ceratobranchial formation. TRIM promoted a progenitor CNC fate and inhibited chondrogenic differentiation, which were mediated through impaired nitric oxide (NO) production without appreciable effect on global protein S-nitrosylation. Instead, TRIM perturbed hox gene patterning and caused histone hypoacetylation. Rescue of TRIM phenotype was achieved with overexpression of histone acetyltransferase kat6a, inhibition of histone deacetylase, and complementary NO. These studies demonstrate that NO signaling and histone acetylation are coordinated mechanisms that regulate CNC patterning, differentiation, and convergence during craniofacial morphogenesis.


Journal of Craniofacial Surgery | 2012

Embryonic fate map of first pharyngeal arch structures in the sox10: kaede zebrafish transgenic model.

Max Dougherty; George Kamel; Shubinets; Graham Hickey; Michael Grimaldi; Eric C. Liao

Abstract Cranial neural crest cells follow stereotypic patterns of migration to form craniofacial structures. The zebrafish is a powerful vertebrate genetic model where transgenics with reporter proteins under the transcriptional regulation of lineage-specific promoters can be generated. Numerous studies demonstrate that the zebrafish ethmoid plate is embryologically analogous to the mammalian palate. A fate map correlating embryonic cranial neural crest to defined jaw structures would provide a useful context for the morphogenetic analysis of craniofacial development. To that end, the sox10:kaede transgenic was generated, where sox10 provides lineage restriction to the neural crest. Specific regions of neural crest were labeled at the 10-somite stage by photoconversion of the kaede reporter protein. Lineage analysis was carried out during pharyngeal development in wild-type animals, after miR140 injection, and after estradiol treatment. At the 10-somite stage, cranial neural crest cells anterior of the eye contributed to the median ethmoid plate, whereas cells medial to the eye formed the lateral ethmoid plate and trabeculae and a posterior population formed the mandible. miR-140 overexpression and estradiol inhibition of Hedgehog signaling resulted in cleft development, with failed migration of the anterior cell population to form the median ethmoid plate. The sox10:kaede transgenic line provides a useful tool for neural crest lineage analysis. These studies illustrate the advantages of the zebrafish model for application in morphogenetic studies of vertebrate craniofacial development.


Developmental Biology | 2013

Requirement for frzb and fzd7a in cranial neural crest convergence and extension mechanisms during zebrafish palate and jaw morphogenesis

George Kamel; Tatiana Hoyos; Lucie Rochard; Max Dougherty; Yawei Kong; William Ka Fai Tse; Valeriy Shubinets; Michael Grimaldi; Eric C. Liao

Regulation of convergence and extension by wnt-frizzled signaling is a common theme in embryogenesis. This study examines the functional requirements of frzb and fzd7a in convergence and extension mechanisms during craniofacial development. Using a morpholino knockdown approach, we found that frzb and fzd7a are dispensable for directed migration of the bilateral trabeculae, but necessary for the convergence and extension of the palatal elements, where the extension process is mediated by chondrocyte proliferation, morphologic change and intercalation. In contrast, frzb and fzd7a are required for convergence of the mandibular prominences, where knockdown of either frzb or fzd7a resulted in complete loss of lower jaw structures. Further, we found that bapx1 was specifically downregulated in the wnt9a/frzb/fzd7a morphants, while general neural crest markers were unaffected. In addition, expression of wnt9a and frzb was also absent in the edn-/- mutant. Notably, over-expression of bapx1 was sufficient to partially rescue mandibular elements in the wnt9a/frzb/fzd7a morphants, demonstrating genetic epistasis of bapx1 acting downstream of edn1 and wnt9a/frzb/fzd7a in lower jaw development. This study underscores the important role of wnt-frizzled signaling in convergence and extension in palate and craniofacial morphogenesis, distinct regulation of upper vs. lower jaw structures, and integration of wnt-frizzled with endothelin signaling to coordinate shaping of the facial form.


Cell | 2018

Human-Specific NOTCH2NL Genes Affect Notch Signaling and Cortical Neurogenesis

Ian T Fiddes; Gerrald A. Lodewijk; Meghan Mooring; Colleen M. Bosworth; Adam D. Ewing; Gary L. Mantalas; Adam M. Novak; Anouk van den Bout; Alex Bishara; Jimi L. Rosenkrantz; Ryan Lorig-Roach; Andrew R. Field; Maximilian Haeussler; Lotte Russo; Aparna Bhaduri; Tomasz J. Nowakowski; Alex A. Pollen; Max Dougherty; Xander Nuttle; Marie-Claude Addor; Simon Zwolinski; Sol Katzman; Arnold R. Kriegstein; Evan E. Eichler; Sofie R. Salama; Frank M. J. Jacobs; David Haussler

Genetic changes causing brain size expansion in human evolution have remained elusive. Notch signaling is essential for radial glia stem cell proliferation and is a determinant of neuronal number in the mammalian cortex. We find that three paralogs of human-specific NOTCH2NL are highly expressed in radial glia. Functional analysis reveals that different alleles of NOTCH2NL have varying potencies to enhance Notch signaling by interacting directly with NOTCH receptors. Consistent with a role in Notch signaling, NOTCH2NL ectopic expression delays differentiation of neuronal progenitors, while deletion accelerates differentiation into cortical neurons. Furthermore, NOTCH2NL genes provide the breakpoints in 1q21.1 distal deletion/duplication syndrome, where duplications are associated with macrocephaly and autism and deletions with microcephaly and schizophrenia. Thus, the emergence of human-specific NOTCH2NL genes may have contributed to the rapid evolution of the larger human neocortex, accompanied by loss of genomic stability at the 1q21.1 locus and resulting recurrent neurodevelopmental disorders.


Science | 2018

High-resolution comparative analysis of great ape genomes

Zev N. Kronenberg; Ian T Fiddes; David Gordon; Shwetha Murali; Stuart Cantsilieris; Olivia S. Meyerson; Jason G. Underwood; Bradley J. Nelson; Mark Chaisson; Max Dougherty; Katherine M. Munson; Alex Hastie; Mark Diekhans; Fereydoun Hormozdiari; Nicola Lorusso; Kendra Hoekzema; Ruolan Qiu; Karen Clark; Archana Raja; AnneMarie E. Welch; Melanie Sorensen; Carl Baker; Robert S. Fulton; Joel Armstrong; Tina A. Graves-Lindsay; Ahmet M. Denli; Emma R. Hoppe; Pinghsun Hsieh; Christopher M. Hill; Andy Wing Chun Pang

A spotlight on great ape genomes Most nonhuman primate genomes generated to date have been “humanized” owing to their many gaps and the reliance on guidance by the reference human genome. To remove this humanizing effect, Kronenberg et al. generated and assembled long-read genomes of a chimpanzee, an orangutan, and two humans and compared them with a previously generated gorilla genome. This analysis recognized genomic structural variation specific to humans and particular ape lineages. Comparisons between human and chimpanzee cerebral organoids showed down-regulation of the expression of specific genes in humans, relative to chimpanzees, related to noncoding variation identified in this analysis. Science, this issue p. eaar6343 Analysis of long-read great ape and human genomes identifies human-specific changes affecting brain gene expression. INTRODUCTION Understanding the genetic differences that make us human is a long-standing endeavor that requires the comprehensive discovery and comparison of all forms of genetic variation within great ape lineages. RATIONALE The varied quality and completeness of ape genomes have limited comparative genetic analyses. To eliminate this contiguity and quality disparity, we generated human and nonhuman ape genome assemblies without the guidance of the human reference genome. These new genome assemblies enable both coarse and fine-scale comparative genomic studies. RESULTS We sequenced and assembled two human, one chimpanzee, and one orangutan genome using high-coverage (>65x) single-molecule, real-time (SMRT) long-read sequencing technology. We also sequenced more than 500,000 full-length complementary DNA samples from induced pluripotent stem cells to construct de novo gene models, increasing our knowledge of transcript diversity in each ape lineage. The new nonhuman ape genome assemblies improve gene annotation and genomic contiguity (by 30- to 500-fold), resulting in the identification of larger synteny blocks (by 22- to 74-fold) when compared to earlier assemblies. Including the latest gorilla genome, we now estimate that 83% of the ape genomes can be compared in a multiple sequence alignment. We observe a modest increase in single-nucleotide variant divergence compared to previous genome analyses and estimate that 36% of human autosomal DNA is subject to incomplete lineage sorting. We fully resolve most common repeat differences, including full-length retrotransposons such as the African ape-specific endogenous retroviral element PtERV1. We show that the spread of this element independently in the gorilla and chimpanzee lineage likely resulted from a founder element that failed to segregate to the human lineage because of incomplete lineage sorting. The improved sequence contiguity allowed a more systematic discovery of structural variation (>50 base pairs in length) (see the figure). We detected 614,186 ape deletions, insertions, and inversions, assigning each to specific ape lineages. Unbiased genome scaffolding (optical maps, bacterial artificial chromosome sequencing, and fluorescence in situ hybridization) led to the discovery of large, unknown complex inversions in gene-rich regions. Of the 17,789 fixed human-specific insertions and deletions, we focus on those of potential functional effect. We identify 90 that are predicted to disrupt genes and an additional 643 that likely affect regulatory regions, more than doubling the number of human-specific deletions that remove regulatory sequence in the human lineage. We investigate the association of structural variation with changes in human-chimpanzee brain gene expression using cerebral organoids as a proxy for expression differences. Genes associated with fixed structural variants (SVs) show a pattern of down-regulation in human radial glial neural progenitors, whereas human-specific duplications are associated with up-regulated genes in human radial glial and excitatory neurons (see the figure). CONCLUSION The improved ape genome assemblies provide the most comprehensive view to date of intermediate-size structural variation and highlight several dozen genes associated with structural variation and brain-expression differences between humans and chimpanzees. These new references will provide a stepping stone for the completion of great ape genomes at a quality commensurate with the human reference genome and, ultimately, an understanding of the genetic differences that make us human. SMRT assemblies and SV analyses. (Top) Contiguity of the de novo assemblies. (Bottom, left to right) For each ape, SVdetection was done against the human reference genome as represented by a dot plot of an inversion). Human-specific SVs, identified by comparing ape SVs and population genotyping (0/0, homozygous reference),were compared to single-cell gene expression differences [range: low (dark blue) to high (dark red)] in primary and organoid tissues. Each heatmap row is a gene that intersects an insertion or deletion (green), duplication (cyan), or inversion (light green). Genetic studies of human evolution require high-quality contiguous ape genome assemblies that are not guided by the human reference. We coupled long-read sequence assembly and full-length complementary DNA sequencing with a multiplatform scaffolding approach to produce ab initio chimpanzee and orangutan genome assemblies. By comparing these with two long-read de novo human genome assemblies and a gorilla genome assembly, we characterized lineage-specific and shared great ape genetic variation ranging from single– to mega–base pair–sized variants. We identified ~17,000 fixed human-specific structural variants identifying genic and putative regulatory changes that have emerged in humans since divergence from nonhuman apes. Interestingly, these variants are enriched near genes that are down-regulated in human compared to chimpanzee cerebral organoids, particularly in cells analogous to radial glial neural progenitors.


PLOS ONE | 2014

Genome Sequencing of Idiopathic Pulmonary Fibrosis in Conjunction with a Medical School Human Anatomy Course

Akash Kumar; Max Dougherty; Gregory M. Findlay; Madeleine Geisheker; Jason C. Klein; John Lazar; Heather Machkovech; Jesse Resnick; Rebecca Resnick; Alexander I. Salter; Faezeh Talebi-Liasi; Christopher K. Arakawa; Jacob Baudin; Andrew R. Bogaard; Rebecca Salesky; Qian Zhou; Kelly D. Smith; John I. Clark; Jay Shendure; Marshall S. Horwitz

Even in cases where there is no obvious family history of disease, genome sequencing may contribute to clinical diagnosis and management. Clinical application of the genome has not yet become routine, however, in part because physicians are still learning how best to utilize such information. As an educational research exercise performed in conjunction with our medical school human anatomy course, we explored the potential utility of determining the whole genome sequence of a patient who had died following a clinical diagnosis of idiopathic pulmonary fibrosis (IPF). Medical students performed dissection and whole genome sequencing of the cadaver. Gross and microscopic findings were more consistent with the fibrosing variant of nonspecific interstitial pneumonia (NSIP), as opposed to IPF per se. Variants in genes causing Mendelian disorders predisposing to IPF were not detected. However, whole genome sequencing identified several common variants associated with IPF, including a single nucleotide polymorphism (SNP), rs35705950, located in the promoter region of the gene encoding mucin glycoprotein MUC5B. The MUC5B promoter polymorphism was recently found to markedly elevate risk for IPF, though a particular association with NSIP has not been previously reported, nor has its contribution to disease risk previously been evaluated in the genome-wide context of all genetic variants. We did not identify additional predicted functional variants in a region of linkage disequilibrium (LD) adjacent to MUC5B, nor did we discover other likely risk-contributing variants elsewhere in the genome. Whole genome sequencing thus corroborates the association of rs35705950 with MUC5B dysregulation and interstitial lung disease. This novel exercise additionally served a unique mission in bridging clinical and basic science education.


Genome Research | 2018

Transcriptional fates of human-specific segmental duplications in brain

Max Dougherty; Jason G. Underwood; Bradley J. Nelson; Elizabeth Tseng; Katherine M. Munson; Osnat Penn; Tomasz J. Nowakowski; Alex A. Pollen; Evan E. Eichler

Despite the importance of duplicate genes for evolutionary adaptation, accurate gene annotation is often incomplete, incorrect, or lacking in regions of segmental duplication. We developed an approach combining long-read sequencing and hybridization capture to yield full-length transcript information and confidently distinguish between nearly identical genes/paralogs. We used biotinylated probes to enrich for full-length cDNA from duplicated regions, which were then amplified, size-fractionated, and sequenced using single-molecule, long-read sequencing technology, permitting us to distinguish between highly identical genes by virtue of multiple paralogous sequence variants. We examined 19 gene families as expressed in developing and adult human brain, selected for their high sequence identity (average >99%) and overlap with human-specific segmental duplications (SDs). We characterized the transcriptional differences between related paralogs to better understand the birth-death process of duplicate genes and particularly how the process leads to gene innovation. In 48% of the cases, we find that the expressed duplicates have changed substantially from their ancestral models due to novel sites of transcription initiation, splicing, and polyadenylation, as well as fusion transcripts that connect duplication-derived exons with neighboring genes. We detect unannotated open reading frames in genes currently annotated as pseudogenes, while relegating other duplicates to nonfunctional status. Our method significantly improves gene annotation, specifically defining full-length transcripts, isoforms, and open reading frames for new genes in highly identical SDs. The approach will be more broadly applicable to genes in structurally complex regions of other genomes where the duplication process creates novel genes important for adaptive traits.


Cold Spring Harb Mol Case Stud | 2016

Genome sequencing in a case of Niemann–Pick type C

Max Dougherty; John Lazar; Jason C. Klein; Karina Diaz; Theodore Gobillot; Eli Grunblatt; Nicholas Hasle; Daniel Lawrence; Megan Maurano; Maria T. Nelson; Gregory Olson; Sanjay Srivatsan; Jay Shendure; C. Dirk Keene; Bird Td; Marshall S. Horwitz; Desiree A. Marshall

Adult-onset Niemann–Pick disease type C (NPC) is an infrequent presentation of a rare neurovisceral lysosomal lipid storage disorder caused by autosomal recessive mutations in NPC1 (∼95%) or NPC2 (∼5%). Our patient was diagnosed at age 33 when he presented with a 10-yr history of difficulties in judgment, concentration, speech, and coordination. A history of transient neonatal jaundice and splenomegaly with bone marrow biopsy suggesting a lipid storage disorder pointed to NPC; biochemical (“variant” level cholesterol esterification) and ultrastructural studies in adulthood confirmed the diagnosis. Genetic testing revealed two different missense mutations in the NPC1 gene—V950M and N1156S. Symptoms progressed over >20 yr to severe ataxia and spasticity, dementia, and dysphagia with aspiration leading to death. Brain autopsy revealed mild atrophy of the cerebrum and cerebellum. Microscopic examination showed diffuse gray matter deposition of balloon neurons, mild white matter loss, extensive cerebellar Purkinje cell loss with numerous “empty baskets,” and neurofibrillary tangles predominantly in the hippocampal formation and transentorhinal cortex. We performed whole-genome sequencing to examine whether the patient harbored variants outside of the NPC1 locus that could have contributed to his late-onset phenotype. We focused analysis on genetic modifiers in pathways related to lipid metabolism, longevity, and neurodegenerative disease. We identified no rare coding variants in any of the pathways examined nor was the patient enriched for genome-wide association study (GWAS) single-nucleotide polymorphisms (SNPs) associated with longevity or altered lipid metabolism. In light of these findings, this case provides support for the V950M variant being sufficient for adult-onset NPC disease.


Journal of Visualized Experiments | 2013

Visualization of craniofacial development in the sox10: kaede transgenic zebrafish line using time-lapse confocal microscopy.

Lisa Gfrerer; Max Dougherty; Eric C. Liao

Vertebrate palatogenesis is a highly choreographed and complex developmental process, which involves migration of cranial neural crest (CNC) cells, convergence and extension of facial prominences, and maturation of the craniofacial skeleton. To study the contribution of the cranial neural crest to specific regions of the zebrafish palate a sox10: kaede transgenic zebrafish line was generated. Sox10 provides lineage restriction of the kaede reporter protein to the neural crest, thereby making the cell labeling a more precise process than traditional dye or reporter mRNA injection. Kaede is a photo-convertible protein that turns from green to red after photo activation and makes it possible to follow cells precisely. The sox10: kaede transgenic line was used to perform lineage analysis to delineate CNC cell populations that give rise to maxillary versus mandibular elements and illustrate homology of facial prominences to amniotes. This protocol describes the steps to generate a live time-lapse video of a sox10: kaede zebrafish embryo. Development of the ethmoid plate will serve as a practical example. This protocol can be applied to making a time-lapse confocal recording of any kaede or similar photoconvertible reporter protein in transgenic zebrafish. Furthermore, it can be used to capture not only normal, but also abnormal development of craniofacial structures in the zebrafish mutants.

Collaboration


Dive into the Max Dougherty's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valeriy Shubinets

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Alex A. Pollen

University of California

View shared research outputs
Top Co-Authors

Avatar

Carl Baker

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian T Fiddes

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge