Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Max Lataillade is active.

Publication


Featured researches published by Max Lataillade.


Antimicrobial Agents and Chemotherapy | 2013

Activity of the HIV-1 Attachment Inhibitor BMS-626529, the Active Component of the Prodrug BMS-663068, against CD4-Independent Viruses and HIV-1 Envelopes Resistant to Other Entry Inhibitors

Zhufang Li; Nannan Zhou; Yongnian Sun; Neelanjana Ray; Max Lataillade; George J. Hanna; Mark Krystal

ABSTRACT BMS-626529 is a novel small-molecule HIV-1 attachment inhibitor active against both CCR5- and CXCR4-tropic viruses. BMS-626529 functions by preventing gp120 from binding to CD4. A prodrug of this compound, BMS-663068, is currently in clinical development. As a theoretical resistance pathway to BMS-663068 could be the development of a CD4-independent phenotype, we examined the activity of BMS-626529 against CD4-independent viruses and investigated whether resistance to BMS-626529 could be associated with a CD4-independent phenotype. Finally, we evaluated whether cross-resistance exists between BMS-626529 and other HIV-1 entry inhibitors. Two laboratory-derived envelopes with a CD4-independent phenotype (one CXCR4 tropic and one CCR5 tropic), five envelopes from clinical isolates with preexisting BMS-626529 resistance, and several site-specific mutant BMS-626529-resistant envelopes were examined for their dependence on CD4 for infectivity or susceptibility to BMS-626529. Viruses resistant to other entry inhibitors (enfuvirtide, maraviroc, and ibalizumab) were also examined for susceptibility to BMS-626529. Both CD4-independent laboratory isolates retained sensitivity to BMS-626529 in CD4− cells, while HIV-1 envelopes from viruses resistant to BMS-626529 exhibited no evidence of a CD4-independent phenotype. BMS-626529 also exhibited inhibitory activity against ibalizumab- and enfuvirtide-resistant envelopes. While there appeared to be some association between maraviroc resistance and reduced susceptibility to BMS-626529, an absolute correlation cannot be presumed, since some CCR5-tropic maraviroc-resistant envelopes remained sensitive to BMS-626529. Clinical use of the prodrug BMS-663068 is unlikely to promote resistance via generation of CD4-independent virus. No cross-resistance between BMS-626529 and other HIV entry inhibitors was observed, which could allow for sequential or concurrent use with different classes of entry inhibitors.


Journal of Antimicrobial Chemotherapy | 2014

Genotypic correlates of susceptibility to HIV-1 attachment inhibitor BMS-626529, the active agent of the prodrug BMS-663068

Nannan Zhou; Beata Nowicka-Sans; Brian McAuliffe; Neelanjana Ray; Betsy J. Eggers; Hua Fang; Li Fan; Matthew D. Healy; David R. Langley; Carey Hwang; Max Lataillade; George J. Hanna; Mark Krystal

OBJECTIVES In an 8 day monotherapy study of subjects infected with HIV-1 (subtype B) (NCT01009814), BMS-626529 (an attachment inhibitor that binds to HIV-1 envelope glycoprotein gp120), administered as the prodrug BMS-663068, produced substantial declines in plasma HIV-1 RNA. However, large variability in susceptibility to BMS-626529 was noted and virus with low susceptibility was less likely to be suppressed by BMS-663068 administration. The current analysis sought to investigate the genotypic correlates of susceptibility to BMS-626529. METHODS In vitro selection experiments, evaluation of clinical samples of subtype B from the monotherapy study and evaluation of intrinsically resistant subtype AE viruses were conducted. Reverse genetics was used to identify key substitutions in envelope clones responsible for reduced susceptibility. RESULTS An M426L or S375M change were the major substitutions associated with reductions in susceptibility to BMS-626529 in baseline samples of subtype B viruses from the monotherapy study, with M434I and M475I contributing to a lesser extent. Class resistance in subtype AE viruses was mapped to 375H and 475I substitutions, found in the vast majority of these viruses. Analysis of multiple envelope clones from infected subjects showed higher intrasubject variability in susceptibility to BMS-626529 compared with other classes of entry inhibitors. CONCLUSIONS These data define key genotypic substitutions in HIV-1 gp120 that could confer phenotypic resistance to BMS-626529.


Antimicrobial Agents and Chemotherapy | 2013

In Vitro Cross-Resistance Profile of Nucleoside Reverse Transcriptase Inhibitor (NRTI) BMS-986001 against Known NRTI Resistance Mutations

Zhufang Li; Brian Terry; William Olds; Tricia Protack; Carol Deminie; B Minassian; Beata Nowicka-Sans; Yongnian Sun; Ira B. Dicker; Carey Hwang; Max Lataillade; George J. Hanna; Mark Krystal

ABSTRACT BMS-986001 is a novel HIV nucleoside reverse transcriptase inhibitor (NRTI). To date, little is known about its resistance profile. In order to examine the cross-resistance profile of BMS-986001 to NRTI mutations, a replicating virus system was used to examine specific amino acid mutations known to confer resistance to various NRTIs. In addition, reverse transcriptases from 19 clinical isolates with various NRTI mutations were examined in the Monogram PhenoSense HIV assay. In the site-directed mutagenesis studies, a virus containing a K65R substitution exhibited a 0.4-fold change in 50% effective concentration (EC50) versus the wild type, while the majority of viruses with the Q151M constellation (without M184V) exhibited changes in EC50 versus wild type of 0.23- to 0.48-fold. Susceptibility to BMS-986001 was also maintained in an L74V-containing virus (0.7-fold change), while an M184V-only-containing virus induced a 2- to 3-fold decrease in susceptibility. Increasing numbers of thymidine analog mutation pattern 1 (TAM-1) pathway mutations correlated with decreases in susceptibility to BMS-986001, while viruses with TAM-2 pathway mutations exhibited a 5- to 8-fold decrease in susceptibility, regardless of the number of TAMs. A 22-fold decrease in susceptibility to BMS-986001 was observed in a site-directed mutant containing the T69 insertion complex. Common non-NRTI (NNRTI) mutations had little impact on susceptibility to BMS-986001. The results from the site-directed mutants correlated well with the more complicated genotypes found in NRTI-resistant clinical isolates. Data from clinical studies are needed to determine the clinically relevant resistance cutoff values for BMS-986001.


The Lancet HIV | 2015

Safety and efficacy of the HIV-1 attachment inhibitor prodrug BMS-663068 in treatment-experienced individuals: 24 week results of AI438011, a phase 2b, randomised controlled trial

Jacob Lalezari; Gulam H Latiff; Cynthia Brinson; Juan Echevarria; Sandra Treviño-Pérez; Johannes R. Bogner; Melanie Thompson; Jan Fourie; Otto A Sussmann Pena; Fernando C Mendo Urbina; Marcelo Martins; Iulian G Diaconescu; David Stock; Samit R Joshi; George J. Hanna; Max Lataillade

BACKGROUND BMS-663068 is an oral prodrug of BMS-626529, an attachment inhibitor that binds to HIV-1 gp120, blocking viral attachment to host CD4 cells. AI438011 is an ongoing trial investigating the efficacy, safety, and dose-response of BMS-663068 in treatment-experienced, HIV-1-infected patients. Herein we present the results of the primary analysis. METHODS AI438011 is a phase 2b, randomised, active-controlled trial, at 53 hospitals and outpatient clinics across ten countries in North and South America, Europe, and Africa. Individuals with an HIV-1 RNA viral load of at least 1000 copies per mL and a BMS-626529 half-maximum inhibitory concentration lower than 100 nmol/L were randomly assigned (1:1:1:1:1) to receive either BMS-663068 at 400 mg twice daily, 800 mg twice daily, 600 mg once daily, or 1200 mg once daily or ritonavir-boosted atazanavir (300 mg of atazanavir and 100 mg of ritonavir once daily), each with 400 mg of raltegravir twice daily and 300 mg of tenofovir disoproxil fumarate once daily as a backbone. The sponsor, participants, and investigators were masked for BMS-663068 dose but not for allocation. Primary endpoints were the proportion of patients with an HIV-1 RNA viral load less than 50 copies per mL (response rate) at week 24 and the frequency of serious adverse events and adverse events leading to discontinuation, up to the week 24 analysis. The primary analyses included all patients who received at least one dose of study drug (modified intention-to-treat population). This study is registered at ClinicalTrials.gov, NCT01384734. FINDINGS Between July 26, 2011, and July 16, 2012, 581 participants were assessed for eligibility. Of these, 254 patients were randomly assigned to receive either BMS-663068 (n=52 for the 400 mg twice daily group, n=50 for the 800 mg twice daily group, n=51 for the 600 mg once daily group, and n=50 for the 1200 mg once daily group) or ritonavir-boosted atazanavir (n=51). 200 patients received at least one dose of BMS-663068, and 51 patients received at least one dose of ritonavir-boosted atazanavir. At week 24, 40 (80%) of 50 patients in the BMS-663068 400 mg twice daily group, 34 (69%) of 49 patients in the 800 mg twice daily group, 39 (76%) of 51 patients in the 600 mg once daily group, and 36 (72%) of 50 patients in the 1200 mg once daily group had an HIV-1 RNA viral load less than 50 copies per mL, compared with 38 (75%) of 51 patients in the ritonavir-boosted atazanavir group. Serious adverse events were noted in 13 (7%) of 200 patients in the BMS-663068 groups and five (10%) of the 51 patients in the ritonavir-boosted atazanavir group. Four (2%) of the 200 patients in the BMS-663068 groups and two (4%) of the 51 patients in the ritonavir-boosted atazanavir group discontinued because of adverse events. No serious adverse events or adverse events leading to discontinuation were BMS-663068-related. Grade 2-4 adverse events related to study drug(s) occurred in 17 (9%) of 200 patients across the BMS-663068 groups and 14 (27%) of 51 patients in the ritonavir-boosted atazanavir group. For the BMS-663068 groups these events were mostly single instances with no dose relation and for the ritonavir-boosted atazanavir group these were mostly gastrointestinal or hepatobiliary disorders associated with hyperbilirubinaemia. INTERPRETATION In a comparison with ritonavir-boosted atazanavir, efficacy and safety of BMS-663068 up to the week 24 analysis support continued development of BMS-663068, which is being assessed in a phase 3 trial in heavily treatment-experienced individuals. FUNDING Bristol-Myers Squibb.


The Lancet HIV | 2016

Efficacy, safety, bone and metabolic effects of HIV nucleoside reverse transcriptase inhibitor BMS-986001 (AI467003): a phase 2b randomised, controlled, partly blinded trial

Samir Gupta; Grace A. McComsey; John Lombaard; Juan Echevarría; Catherine Orrell; Anchalee Avihingsanon; Olayemi Osiyemi; Mario Santoscoy; Neelanjana Ray; David Stock; Samit R Joshi; George J. Hanna; Max Lataillade

BACKGROUND BMS-986001 is a thymidine analogue nucleoside reverse transcriptase inhibitor (NRTI) designed to maintain in-vitro antiviral activity while minimising off-target effects. We assessed the efficacy and safety of BMS-986001 versus tenofovir disoproxil fumarate in treatment-naive patients with HIV-1. METHODS In this phase 2b, randomised, active-controlled trial (AI467003), we recruited treatment-naive (no current or previous exposure to an antiretroviral drug for >1 week) adults (aged at least 18 years) with HIV-1 from 47 sites across Asia, Australia, Europe, North America, South Africa, and South America. Patients with plasma HIV-1 RNA greater than 5000 copies per mL and CD4 counts greater than 200 cells per μL were randomly assigned (2:2:2:3) to receive BMS-986001 100 mg, 200 mg, or 400 mg once a day or to receive tenofovir disoproxil fumarate 300 mg once a day; each allocation was given with efavirenz 600 mg once a day and lamivudine 300 mg once a day. Both patients and investigators were masked to BMS-986001 dose (achieved with similar looking placebo tablets), but not allocation up to and including week 48. The primary endpoints were the proportion of patients with plasma HIV-1 RNA less than 50 copies per mL and safety events (serious adverse events and adverse events leading to discontinuation) through week 24; the main analysis was with a modified intention-to-treat population. Resistance analysis was a secondary endpoint, and additional safety parameters were exploratory endpoints. This trial is registered with ClinicalTrials.gov, number NCT01489046, and the European Clinical Trials Database, number EudraCT 2011-003329-89. FINDINGS Patients were recruited between Jan 25, 2012, and Oct 3, 2012; 757 patients were assessed for eligibility and 301 were randomly assigned to receive either BMS-986001 once a day (67 patients to 100 mg, 67 to 200 mg, and 66 to 400 mg) or tenofovir disoproxil fumarate (n=101). 297 patients received at least one dose of study drug. At week 24, 57 (88%) of 65 patients for whom there were data in the 100 mg group, 54 (81%) of 67 in the 200 mg group, 62 (94%) of 66 in the 400 mg group achieved HIV-1 RNA less than 50 copies per mL, compared with 88 (89%) of 99 in the tenofovir disoproxil fumarate group (modified intention-to-treat population). BMS-986001 was generally well tolerated through week 48. Two patients had BMS-986001-related serious adverse events (atypical drug eruption and thrombocytopenia) and two in the tenofovir disoproxil fumarate group had study drug-related serious adverse events (potential drug-induced liver injury and depression or lipodystrophy) that led to discontinuation. NRTI resistance-associated mutations were reported in four (2%) of 198 patients, and non-NRTI mutations in 17 (9%) of 198 patients receiving BMS-986001 versus none of 99 and one (1%) of 99 patients receiving tenofovir disoproxil fumarate, respectively. Compared with tenofovir disoproxil fumarate, individuals in the BMS-986001 groups showed a smaller decrease in lumbar spine and hip bone mineral density but greater accumulation of limb and trunk fat, subcutaneous and visceral adipose tissue, and increased total cholesterol. INTERPRETATION BMS-986001 had similar efficacy to that of tenofovir disoproxil fumarate and was associated with a smaller decrease in bone mineral density; however, greater resistance and gains in both peripheral and central fat accumulation were recorded for the investigational drug. Bristol-Myers Squibb has discontinued its involvement in the development of BMS-986001, and future decisions on development will be made by Oncolys BioPharma. FUNDING Bristol-Myers Squibb.


PLOS Pathogens | 2016

Mechanistic Studies and Modeling Reveal the Origin of Differential Inhibition of Gag Polymorphic Viruses by HIV-1 Maturation Inhibitors

Zeyu Lin; Joseph L. Cantone; Hao Lu; Beata Nowicka-Sans; Tricia Protack; Tian Yuan; Hong Yang; Zheng Liu; Dieter M. Drexler; Alicia Regueiro-Ren; Nicholas A. Meanwell; Mark Cockett; Mark Krystal; Max Lataillade; Ira B. Dicker

HIV-1 maturation inhibitors (MIs) disrupt the final step in the HIV-1 protease-mediated cleavage of the Gag polyprotein between capsid p24 capsid (CA) and spacer peptide 1 (SP1), leading to the production of infectious virus. BMS-955176 is a second generation MI with improved antiviral activity toward polymorphic Gag variants compared to a first generation MI bevirimat (BVM). The underlying mechanistic reasons for the differences in polymorphic coverage were studied using antiviral assays, an LC/MS assay that quantitatively characterizes CA/SP1 cleavage kinetics of virus like particles (VLPs) and a radiolabel binding assay to determine VLP/MI affinities and dissociation kinetics. Antiviral assay data indicates that BVM does not achieve 100% inhibition of certain polymorphs, even at saturating concentrations. This results in the breakthrough of infectious virus (partial antagonism) regardless of BVM concentration. Reduced maximal percent inhibition (MPI) values for BVM correlated with elevated EC50 values, while rates of HIV-1 protease cleavage at CA/SP1 correlated inversely with the ability of BVM to inhibit HIV-1 Gag polymorphic viruses: genotypes with more rapid CA/SP1 cleavage kinetics were less sensitive to BVM. In vitro inhibition of wild type VLP CA/SP1 cleavage by BVM was not maintained at longer cleavage times. BMS-955176 exhibited greatly improved MPI against polymorphic Gag viruses, binds to Gag polymorphs with higher affinity/longer dissociation half-lives and exhibits greater time-independent inhibition of CA/SP1 cleavage compared to BVM. Virological (MPI) and biochemical (CA/SP1 cleavage rates, MI-specific Gag affinities) data were used to create an integrated semi-quantitative model that quantifies CA/SP1 cleavage rates as a function of both MI and Gag polymorph. The model outputs are in accord with in vitro antiviral observations and correlate with observed in vivo MI efficacies. Overall, these findings may be useful to further understand antiviral profiles and clinical responses of MIs at a basic level, potentially facilitating further improvements to MI potency and coverage.


Clinical Infectious Diseases | 2017

Antiviral Activity, Safety, and Exposure–Response Relationships of GSK3532795, a Second-Generation Human Immunodeficiency Virus Type 1 Maturation Inhibitor, Administered as Monotherapy or in Combination With Atazanavir With or Without Ritonavir in a Phase 2a Randomized, Dose-Ranging, Controlled Trial (AI468002)

Carey Hwang; Dirk Schürmann; Christian Sobotha; Marta Boffito; Heather Sevinsky; Neelanjana Ray; Palanikumar Ravindran; Hong Xiao; Christian Keicher; Andreas Hüser; Mark Krystal; Ira B. Dicker; Dennis M. Grasela; Max Lataillade

Summary GSK3532795 is a second-generation HIV-1 maturation inhibitor. In this phase 2a dose-ranging study, GSK3532795 demonstrated potent antiviral activity against both subtype B (monotherapy or atazanavir ± ritonavir) and subtype C (monotherapy), and was generally well tolerated. These data support continued development of GSK3532795.


Aids Reviews | 2011

European recommendations for the clinical use of HIV drug resistance testing: 2011 update

Anne-Mieke Vandamme; Ricardo Jorge Camacho; Francesca Ceccherini-Silberstein; Andrea De Luca; Lucia Palmisano; Dimitrios Paraskevis; Roger Paredes; Mario Poljak; Jean-Claude Schmit; Vincent Soriano; Hauke Walter; Anders Sönnerborg; Mounir Ait-Khaled; Jan Albert; Birgitta Åsjö; Lee T. Bacheler; Denes Banhegyi; Charles A. Boucher; Françoise Brun-Vézinet; Bonaventura Clotet; Marie Pierre de Béthune; Stéphane De Wit; Stephan Dressler; Rob Elston; José M. Gatell; Anna Maria Geretti; Jan Gerstoft; Huldrych F. Günthard; William W. Hall; Daria J. Hazuda


Archive | 2016

Formulations d'inhibiteurs de maturation du vih

Albert J. Delmonte; Ira B. Dicker; Carey Hwang; Samit R Joshi; Max Lataillade


Author | 2016

A Phase 2b randomised, controlled, partially blinded trial of the HIV Nucleoside Reverse Transcriptase Inhibitor BMS-986001 (AI467003): Weeks 24 and 48 Efficacy, Safety, Bone and Metabolic Results

Samir Gupta; Grace A. McComsey; John Lombaard; Juan Echevarria; Catherine Orrell; Anchalee Avihingsanon; Olayemi Osiyemi; Mario Santoscoy; Neelanjana Ray; David Stock; Samit R Joshi; George J. Hanna; Max Lataillade

Collaboration


Dive into the Max Lataillade's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Krystal

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge