Maximilian T. Hörantner
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maximilian T. Hörantner.
Science | 2016
David P. McMeekin; Golnaz Sadoughi; Waqaas Rehman; Giles E. Eperon; Michael Saliba; Maximilian T. Hörantner; Amir A. Haghighirad; Nobuya Sakai; Lars Korte; Bernd Rech; Michael B. Johnston; Laura M. Herz; Henry J. Snaith
Perovskites for tandem solar cells Improving the performance of conventional single-crystalline silicon solar cells will help increase their adoption. The absorption of bluer light by an inexpensive overlying solar cell in a tandem arrangement would provide a step in the right direction by improving overall efficiency. Inorganic-organic perovskite cells can be tuned to have an appropriate band gap, but these compositions are prone to decomposition. McMeekin et al. show that using cesium ions along with formamidinium cations in lead bromide–iodide cells improved thermal and photostability. These improvements lead to high efficiency in single and tandem cells. Science, this issue p. 151 Addition of cesium cations creates a robust ideal inorganic-organic perovskite absorber for tandem silicon solar cells. Metal halide perovskite photovoltaic cells could potentially boost the efficiency of commercial silicon photovoltaic modules from ∼20 toward 30% when used in tandem architectures. An optimum perovskite cell optical band gap of ~1.75 electron volts (eV) can be achieved by varying halide composition, but to date, such materials have had poor photostability and thermal stability. Here we present a highly crystalline and compositionally photostable material, [HC(NH2)2]0.83Cs0.17Pb(I0.6Br0.4)3, with an optical band gap of ~1.74 eV, and we fabricated perovskite cells that reached open-circuit voltages of 1.2 volts and power conversion efficiency of over 17% on small areas and 14.7% on 0.715 cm2 cells. By combining these perovskite cells with a 19%-efficient silicon cell, we demonstrated the feasibility of achieving >25%-efficient four-terminal tandem cells.
Nature Communications | 2015
Wei Zhang; Michael Saliba; David T. Moore; Sandeep Pathak; Maximilian T. Hörantner; Thomas Stergiopoulos; Samuel D. Stranks; Giles E. Eperon; Jack A. Alexander-Webber; Antonio Abate; Aditya Sadhanala; Shuhua Yao; Yulin Chen; Richard H. Friend; Lara A. Estroff; Ulrich Wiesner; Henry J. Snaith
To date, there have been a plethora of reports on different means to fabricate organic-inorganic metal halide perovskite thin films; however, the inorganic starting materials have been limited to halide-based anions. Here we study the role of the anions in the perovskite solution and their influence upon perovskite crystal growth, film formation and device performance. We find that by using a non-halide lead source (lead acetate) instead of lead chloride or iodide, the perovskite crystal growth is much faster, which allows us to obtain ultrasmooth and almost pinhole-free perovskite films by a simple one-step solution coating with only a few minutes annealing. This synthesis leads to improved device performance in planar heterojunction architectures and answers a critical question as to the role of the anion and excess organic component during crystallization. Our work paves the way to tune the crystal growth kinetics by simple chemistry.
Journal of Physical Chemistry Letters | 2015
Konrad Wojciechowski; Tomas Leijtens; Svetlana Siprova; Christoph Schlueter; Maximilian T. Hörantner; Jacob Tse-Wei Wang; Chang-Zhi Li; Alex K.-Y. Jen; Tien-Lin Lee; Henry J. Snaith
Organic-inorganic halide perovskite solar cells have rapidly evolved over the last 3 years. There are still a number of issues and open questions related to the perovskite material, such as the phenomenon of anomalous hysteresis in current-voltage characteristics and long-term stability of the devices. In this work, we focus on the electron selective contact in the perovskite solar cells and physical processes occurring at that heterojunction. We developed efficient devices by replacing the commonly employed TiO2 compact layer with fullerene C60 in a regular n-i-p architecture. Detailed spectroscopic characterization allows us to present further insight into the nature of photocurrent hysteresis and charge extraction limitations arising at the n-type contact in a standard device. Furthermore, we show preliminary stability data of perovskite solar cells under working conditions, suggesting that an n-type organic charge collection layer can increase the long-term performance.
Energy and Environmental Science | 2015
James M. Ball; Samuel D. Stranks; Maximilian T. Hörantner; Sven Hüttner; Wei Zhang; Edward J. W. Crossland; Ivan Ramirez; Moritz Riede; Michael B. Johnston; Richard H. Friend; Henry J. Snaith
Metal-halide perovskite light-absorbers have risen to the forefront of photovoltaics research offering the potential to combine low-cost fabrication with high power-conversion efficiency. Much of the development has been driven by empirical optimisation strategies to fully exploit the favourable electronic properties of the absorber layer. To build on this progress, a full understanding of the device operation requires a thorough optical analysis of the device stack, providing a platform for maximising the power conversion efficiency through a precise determination of parasitic losses caused by coherence and absorption in the non-photoactive layers. Here we use an optical model based on the transfer-matrix formalism for analysis of perovskite-based planar heterojunction solar cells using experimentally determined complex refractive index data. We compare the modelled properties to experimentally determined data, and obtain good agreement, revealing that the internal quantum efficiency in the solar cells approaches 100%. The modelled and experimental dependence of the photocurrent on incidence angle exhibits only a weak variation, with very low reflectivity losses at all angles, highlighting the potential for useful power generation over a full daylight cycle.
Advanced Materials | 2016
Michael Saliba; Simon M. Wood; Jay B. Patel; Pabitra K. Nayak; Jian Huang; Jack A. Alexander-Webber; Bernard Wenger; Samuel D. Stranks; Maximilian T. Hörantner; Jacob Tse-Wei Wang; R. J. Nicholas; Laura M. Herz; Michael B. Johnston; Stephen M. Morris; Henry J. Snaith; Moritz Riede
A general strategy for the in-plane structuring of organic-inorganic perovskite films is presented. The method is used to fabricate an industrially relevant distributed feedback (DFB) cavity, which is a critical step toward all-electrially pumped injection laser diodes. This approach opens the prospects of perovskite materials for much improved optical control in LEDs, solar cells, and also toward applications as optical devices.
ACS Nano | 2016
Jongmin Choi; Seulki Song; Maximilian T. Hörantner; Henry J. Snaith; Taiho Park
An electron transporting layer (ETL) plays an important role in extracting electrons from a perovskite layer and blocking recombination between electrons in the fluorine-doped tin oxide (FTO) and holes in the perovskite layers, especially in planar perovskite solar cells. Dense TiO2 ETLs prepared by a solution-processed spin-coating method (S-TiO2) are mainly used in devices due to their ease of fabrication. Herein, we found that fatal morphological defects at the S-TiO2 interface due to a rough FTO surface, including an irregular film thickness, discontinuous areas, and poor physical contact between the S-TiO2 and the FTO layers, were inevitable and lowered the charge transport properties through the planar perovskite solar cells. The effects of the morphological defects were mitigated in this work using a TiO2 ETL produced from sputtering and anodization. This method produced a well-defined nanostructured TiO2 ETL with an excellent transmittance, single-crystalline properties, a uniform film thickness, a large effective area, and defect-free physical contact with a rough substrate that provided outstanding electron extraction and hole blocking in a planar perovskite solar cell. In planar perovskite devices, anodized TiO2 ETL (A-TiO2) increased the power conversion efficiency by 22% (from 12.5 to 15.2%), and the stabilized maximum power output efficiency increased by 44% (from 8.9 to 12.8%) compared with S-TiO2. This work highlights the importance of the ETL geometry for maximizing device performance and provides insights into achieving ideal ETL morphologies that remedy the drawbacks observed in conventional spin-coated ETLs.
Energy and Environmental Science | 2017
Nakita K. Noel; Severin N. Habisreutinger; Bernard Wenger; Matthew T. Klug; Maximilian T. Hörantner; Michael B. Johnston; R. J. Nicholas; David T. Moore; Henry J. Snaith
Perovskite-based photovoltaics have, in recent years, become poised to revolutionise the solar industry. While there have been many approaches taken to the deposition of this material, one-step spin-coating remains the simplest and most widely used method in research laboratories. Although spin-coating is not recognised as the ideal manufacturing methodology, it represents a starting point from which more scalable deposition methods, such as slot-dye coating or ink-jet printing can be developed. Here, we introduce a new, low-boiling point, low viscosity solvent system that enables rapid, room temperature crystallisation of methylammonium lead triiodide perovskite films, without the use of strongly coordinating aprotic solvents. Through the use of this solvent, we produce dense, pinhole free films with uniform coverage, high specularity, and enhanced optoelectronic properties. We fabricate devices and achieve stabilised power conversion efficiencies of over 18% for films which have been annealed at 100 °C, and over 17% for films which have been dried under vacuum and have undergone no thermal processing. This deposition technique allows uniform coating on substrate areas of up to 125 cm2, showing tremendous promise for the fabrication of large area, high efficiency, solution processed devices, and represents a critical step towards industrial upscaling and large area printing of perovskite solar cells.
Energy and Environmental Science | 2015
Maximilian T. Hörantner; Wei Zhang; Michael Saliba; Konrad Wojciechowski; Henry J. Snaith
Organic–inorganic metal halide perovskites have led to remarkable advancements in emerging photovoltaics with power conversion efficiencies (PCEs) already achieving 20%. In addition to solar cells, these perovskites also show applicability for lasing and LED applications. Here, we control perovskite crystal domain size and microstructure by guiding the growth through a highly ordered metal oxide honeycomb structure, which we form via colloidal monolayer lithography. The organic–inorganic perovskite material fills the holes of the honeycomb remarkably well leading to fully controlled domain size with tuneable film thickness. The honeycomb region is predominantly transparent, whereas the perovskite crystals within the honeycomb are strongly absorbing. We fabricate semi-transparent perovskite solar cells to demonstrate the feasibility of this structuring, which leads to enhanced open-circuit voltage and fill factor in comparison to unstructured partially dewet perovskite thin films. We achieve power conversion efficiencies of up to 9.5% with an average visible transmittance through the active layer of around 37%. The controlled microscopic morphology of perovskite films opens up a wide range of possible investigations, from charge transport optimization to optical enhancements and photonic structuring for photovoltaic, light emitting and lasing devices.
Energy and Environmental Science | 2017
Maximilian T. Hörantner; Henry J. Snaith
Metal halide perovskite absorber materials have emerged as a potential new technology for large-scale low-cost photovoltaic solar power. One great advantage lies in the ability to tune their light absorption band across the visible to near infrared spectral regions, making it an ideal candidate for tandem solar cell applications, in combination with traditional crystalline silicon. For a multi-junction solar cell to operate at peak efficiency, the current generation in all junctions must closely match, especially for monolithically integrated tandem architectures. It is feasible to achieve such matching under a standardized solar spectrum with direct illumination. However, under real world conditions the spectrum of sun light, and the fraction of diffuse to direct sun light varies considerably depending upon the location and weather conditions. Hence, it is not directly obvious how much more efficient a multi-junction solar cell needs to be, in comparison to a single junction cell, before it will produce more electrical power under real world conditions. Here, we introduce a rigorous optical and device simulation to optimize perovskite-on-silicon tandem solar cells and identify feasibility of various optimisation parameters to achieve the highest possible efficiencies. Firstly, we determine that the ideal bandgap for a perovskite “top-cell” is 1.65 eV, which will deliver up to 32% efficiency when combined with a silicon rear cell. Furthermore, we calculate the annual energy yield under hourly spectrum changes at different locations and optimize the stack to show that tandem solar cells are yielding up to 30% more energy output than the single junction silicon. Most critically, the standardized air mass 1.5 efficiency measurement improvements observed for the tandems cells, translate almost entirely to the same fractional improvement in energy yield. Hence, the efficiency of the tandem cell is not significantly “de-rated” by real world spectral variations. We do observe however, that tandem solar cell stacks can deliver further improvements by optimising differently depending on the location of installation. Our results justify the drive towards monolithically integrated multi-junction solar cells, and will enable guidance to design the ideal perovskite tandem device and allow estimations for energy yield and hence the levelized cost of electricity.
Journal of Materials Chemistry | 2017
Seulki Song; Maximilian T. Hörantner; Kyoungwon Choi; Henry J. Snaith; Taiho Park
We introduce 1 step pin-hole free CH3NH3PbI3−xClx perovskite layers by using heated airflow during the nucleation stage of the perovskite. Upon employing heated air, we stimulate uniformly distributed nuclei growth, resulting in a pin-hole free planar perovskite layer. We find an optimized heated airflow of 100 °C as the optimized condition. The resulting planar device employing a conventional TiO2 electron transporting layer exhibits 17.6% average power conversion efficiency with 14.3% maximum powerpoint (MPP) efficiency. In addition, our method gives a very reproducible perovskite layer. Thus, our pin-hole free perovskite layer allows for 14.9% efficiency in a larger area device (0.71 cm2) that is generally prone to shunting paths.