May S. Li
The Chinese University of Hong Kong
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by May S. Li.
Cancer Research | 2011
Alfred S.L. Cheng; Suki S. Lau; Yangchao Chen; Yutaka Kondo; May S. Li; Hai Feng; Arthur K.K. Ching; Kin Fai Cheung; Hoi K. Wong; Joanna H. Tong; Hongchuan Jin; Kwong Wai Choy; Jun Yu; Ka F. To; Nathalie Wong; Tim H M Huang; Joseph J.Y. Sung
Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of the Polycomb-repressive complex 2 (PRC2) that represses gene transcription through histone H3 lysine 27 trimethylation (H3K27me3). Although EZH2 is abundantly present in various cancers, the molecular consequences leading to oncogenesis remain unclear. Here, we show that EZH2 concordantly silences the Wnt pathway antagonists operating at several subcellular compartments, which in turn activate Wnt/β-catenin signaling in hepatocellular carcinomas (HCC). Chromatin immunoprecipitation promoter array and gene expression analyses in HCCs revealed EZH2 occupancy and reduced expression of Wnt antagonists, including the growth-suppressive AXIN2, NKD1, PPP2R2B, PRICKLE1, and SFRP5. Knockdown of EZH2 reduced the promoter occupancy of PRC2, histone deacetylase 1 (HDAC1), and H3K27me3, whereas the activating histone marks were increased, leading to the transcriptional upregulation of the Wnt antagonists. Combinatorial EZH2 and HDAC inhibition dramatically reduced the levels of nuclear β-catenin, T-cell factor-dependent transcriptional activity, and downstream pro-proliferative targets CCND1 and EGFR. Functional analysis revealed that downregulation of EZH2 reduced HCC cell growth, partially through the inhibition of β-catenin signaling. Conversely, ectopic overexpression of EZH2 in immortalized hepatocytes activated Wnt/β-catenin signaling to promote cellular proliferation. In human HCCs, concomitant overexpression of EZH2 and β-catenin was observed in one-third (61/179) of cases and significantly correlated with tumor progression. Our data indicate that EZH2-mediated epigenetic silencing contributes to constitutive activation of Wnt/β-catenin signaling and consequential proliferation of HCC cells, thus representing a novel therapeutic target for this highly malignant tumor.
Gastroenterology | 2013
Alfred S.L. Cheng; May S. Li; Wei Kang; Jian Liang Chou; Suki S. Lau; Minnie Y. Go; Ching C. Lee; Thomas K. W. Ling; Enders K. Ng; Jun Yu; Tim H M Huang; Ka F. To; Michael W.Y. Chan; Joseph J.Y. Sung; Francis K.L. Chan
BACKGROUND & AIMS Deregulation of forkhead box (Fox) proteins, an evolutionarily conserved family of transcriptional regulators, leads to tumorigenesis. Little is known about their regulation or functions in the pathogenesis of gastric cancer. Promoter hypermethylation occurs during Helicobacter pylori-induced gastritis. We investigated whether the deregulated genes contribute to gastric tumorigenesis. METHODS We used integrative genome-wide scans to identify concomitant hypermethylated genes in mice infected with H pylori and human gastric cancer samples. We also analyzed epigenetic gene silencing in gastric tissues from patients with H pylori infection and gastritis, intestinal metaplasia, gastric tumors, or without disease (controls). Target genes were identified by chromatin immunoprecipitation microarrays and expression and luciferase reporter analyses. RESULTS Methylation profile analyses identified the promoter of FOXD3 as the only genomic region with increased methylation in mice and humans during progression of H pylori-associated gastric tumors. FOXD3 methylation also correlated with shorter survival times of patients with gastric cancer. Genome demethylation reactivated FOXD3 expression in gastric cancer cell lines. Transgenic overexpression of FOXD3 significantly inhibited gastric cancer cell proliferation and invasion, and reduced growth of xenograft tumors in mice, at least partially, by promoting tumor cell apoptosis. FOXD3 bound directly to the promoters of, and activated transcription of, genes encoding the cell death regulators CYFIP2 and RARB. Levels of FOXD3, CYFIP2, and RARB messenger RNAs were reduced in human gastric tumor samples, compared with control tissues. CONCLUSIONS FOXD3-mediated transcriptional control of tumor suppressors is deregulated by H pylori infection-induced hypermethylation; this could perturb the balance between cell death and survival. These findings identify a pathway by which epigenetic changes affect gastric tumor suppression.
Journal of Clinical Investigation | 2011
Hai Feng; Alfred S.L. Cheng; Daisy P. Tsang; May S. Li; Minnie Y. Go; Yue S. Cheung; Guijun Zhao; Samuel S. Ng; Marie C.M. Lin; Jun Yu; Paul B.S. Lai; Ka F. To; Joseph J.Y. Sung
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. It is more prevalent in men than women. Related to this, recent genetic studies have revealed a causal role for androgen receptor (AR) in hepatocarcinogenesis, but the underlying molecular mechanism remains unclear. Here, we used genome-wide location and functional analyses to identify a critical mediator of AR signaling - cell cycle-related kinase (CCRK) - that drives hepatocarcinogenesis via a signaling pathway dependent on β-catenin and T cell factor (TCF). Ligand-bound AR activated CCRK transcription and protein expression via direct binding to the androgen-responsive element of the CCRK promoter in human HCC cell lines. In vitro analyses showed that CCRK was critical in human cell lines for AR-induced cell cycle progression, hepatocellular proliferation, and malignant transformation. Ectopic expression of CCRK in immortalized human liver cells activated β-catenin/TCF signaling to stimulate cell cycle progression and to induce tumor formation, as shown in both xenograft and orthotopic models. Conversely, knockdown of CCRK decreased HCC cell growth, and this could be rescued by constitutively active β-catenin or TCF. In primary human HCC tissue samples, AR, CCRK, and β-catenin were concordantly overexpressed in the tumor cells. Furthermore, CCRK overexpression correlated with the tumor staging and poor overall survival of patients. Our results reveal a direct AR transcriptional target, CCRK, that promotes hepatocarcinogenesis through the upregulation of β-catenin/TCF signaling.
Cancer Research | 2012
Shun X. Ren; Alfred S.L. Cheng; Ka F. To; Joanna H.M. Tong; May S. Li; Jin Shen; Clover Ching Man Wong; Lin Zhang; Ruby L.Y. Chan; Xiao J. Wang; Simon S.M. Ng; Lawrence C.-M. Chiu; Victor E. Marquez; Richard L. Gallo; Francis K.L. Chan; Jun Yu; Joseph J.Y. Sung; William Ka Kei Wu; Chi Hin Cho
Cathelicidins are a family of bacteriocidal polypeptides secreted by macrophages and polymorphonuclear leukocytes (PMN). LL-37, the only human cathelicidin, has been implicated in tumorigenesis, but there has been limited investigation of its expression and function in cancer. Here, we report that LL-37 activates a p53-mediated, caspase-independent apoptotic cascade that contributes to suppression of colon cancer. LL-37 was expressed strongly in normal colon mucosa but downregulated in colon cancer tissues, where in both settings its expression correlated with terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive apoptotic cells. Exposure of colon cancer cells to LL-37 induced phosphatidylserine externalization and DNA fragmentation in a manner independent of caspase activation. Apoptogenic function was mediated by nuclear translocation of the proapoptotic factors, apoptosis-inducing factor (AIF) and endonuclease G (EndoG), through p53-dependent upregulation of Bax and Bak and downregulation of Bcl-2 via a pertussis toxin-sensitive G-protein-coupled receptor (GPCR) pathway. Correspondingly, colonic mucosa of cathelicidin-deficient mice exhibited reduced expression of p53, Bax, and Bak and increased expression of Bcl-2 together with a lower basal level of apoptosis. Cathelicidin-deficient mice exhibited an increased susceptibility to azoxymethane-induced colon tumorigenesis, establishing pathophysiologic relevance in colon cancer. Collectively, our findings show that LL-37 activates a GPCR-p53-Bax/Bak/Bcl-2 signaling cascade that triggers AIF/EndoG-mediated apoptosis in colon cancer cells.
Gut | 2014
Zhuo Yu; Yueqiu Gao; Hai Feng; Yingying Lee; May S. Li; Yuan Tian; Minnie Y.Y. Go; Dae-Yeul Yu; Yue-Sun Cheung; Paul B.S. Lai; Jun Yu; Vincent Wai-Sun Wong; Joseph J.Y. Sung; Henry Lik-Yuen Chan; Alfred S.L. Cheng
Background Androgen receptor (AR) signalling contributes to male predominance in hepatocellular carcinoma (HCC), which is more pronounced in HBV-endemic areas. Cell cycle-related kinase (CCRK) is essential for AR-induced hepatocarcinogenesis but its molecular function in HBV-associated HCC remains obscure. Objective To determine the molecular function of CCRK in HBV-associated HCC. Design Transcriptional regulation was assessed by chromatin immunoprecipitation, promoter mutation and luciferase reporter assays. Hepatocellular proliferation and tumourigenesis were examined by colony formation, soft agar assays and using HBV X protein (HBx) transgenic mice with low-dose exposure to diethylnitrosamine. Protein expressions were examined in clinical samples and correlated with patient survival by log-rank Mantel–Cox test. Results Overexpression of CCRK, but not its kinase-defective mutant, activated β-catenin/T cell factor signalling through phosphorylation of glycogen synthase kinase-3β (GSK-3β) at Ser9, led to upregulation of AR transcriptional activity and, subsequently, expression of HBx. The viral transactivator in turn induced CCRK expression through enhanced AR signalling, thus forming a positive regulatory loop. RNA interference silencing of CCRK, which suppressed the CCRK/GSK-3β/β-catenin/AR regulatory loop, significantly suppressed HBx-induced hepatocellular proliferation (p=0.001) and transformation (p<0.001) and remarkably reduced >80% diethylnitrosamine-mediated hepatocarcinogenesis in HBx transgenic mice. Finally, patients with HBV-associated HCC with concordant overexpression of CCRK, GSK-3β phosphorylation at Ser9, active dephosphorylated β-catenin and AR phosphorylation at Ser81 had poorer overall (HR=31.26, p<0.0001) and disease-free (HR=3.60, p<0.01) survival rates. Conclusions Our findings highlight the critical role of CCRK in a self-reinforcing circuitry that regulates HBV-associated hepatocarcinogenesis. Further characterisation of this intricate viral-host signalling may provide new prognostic biomarkers and therapeutic targets for HCC treatment.
Journal of Hepatology | 2015
Hai Feng; Zhuo Yu; Yuan Tian; Yingying Lee; May S. Li; Minnie Y.Y. Go; Yue-Sun Cheung; Paul B.S. Lai; Andrew M. Chan; Ka Fai To; Henry Lik-Yuen Chan; Joseph J.Y. Sung; Alfred S.L. Cheng
BACKGROUND & AIMS Aberrant chromatin modification is a key feature of hepatocellular carcinoma (HCC), which is characterized by strong sexual dimorphism. Both enhancer of zeste homolog 2 (EZH2) and cell cycle-related kinase (CCRK) contribute to hepatocarcinogenesis, yet whether the two oncogenic factors have functional crosstalk is unknown. METHODS Cellular proliferation and tumorigenicity upon transgenic expression and RNA interference were determined by colony formation and soft agar assays, xenograft, orthotopic and diethylnitrosamine-induced HCC models. Gene regulation was assessed by chromatin immunoprecipitation, site-directed mutagenesis, luciferase reporter, co-immunoprecipitation and expression analyses. Protein levels in clinical specimens were correlated with clinicopathological parameters and patient survival rates. RESULTS Ectopic CCRK expression in immortalized human liver cells increased EZH2 and histone H3 lysine 27 trimethylation (H3K27me3) to stimulate proliferation and tumor formation. Conversely, knockdown of CCRK reduced EZH2/H3K27me3 levels and decreased HCC cell growth, which could be rescued by EZH2 over-expression. Mechanistically, GSK-3β phosphorylation by CCRK activated a β-catenin/TCF/E2F1/EZH2 transcriptional feedback loop to epigenetically enhance androgen receptor (AR) signaling. Simultaneously, the phosphorylation of AKT/EZH2 by CCRK facilitated the co-occupancy of CCRK promoter by EZH2-AR and its subsequent transcriptional activation, thus forming a self-reinforcing circuitry. Lentiviral-mediated knockdown of CCRK, which abrogated the phosphorylation-transcriptional network, prevented diethylnitrosamine-induced tumorigenicity. More importantly, the hyperactivation of the CCRK-EZH2 circuitry in human HCCs correlated with tumor recurrence and poor survival. CONCLUSIONS These findings uncover an epigenetic vicious cycle in hepatocarcinogenesis that operates through reciprocal regulation of CCRK and EZH2, providing novel therapeutic strategy for HCC.
Cancer Research | 2011
Alfred S.L. Cheng; Hai Feng; Daisy P. Tsang; May S. Li; Minnie Y. Go; Sunny Y. S. Cheung; Samuel S. Ng; Marie C. Lin; Ka F. To; Jun Yu; Paul B.S. Lai; Joseph J.Y. Sung
Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related deaths worldwide with a gender prevalence observed in men. Recent genetic studies using knockout mouse models have revealed the causal role of androgen receptor (AR) in hepatocarcinogenesis but the underlying molecular mechanism remains unclear. Here we used genome-wide location and functional analyses to show that cell cycle-related kinase (CCRK) is a direct critical mediator of AR signaling. Chromatin immunoprecipitation microarray identified over 200 high-confidence AR direct target genes in HCC cells of which cell cycle regulators were significantly enriched (n = 21; p < 0.0001). Because CCRK has the highest AR binding affinity amongst the identified cell cycle regulators, its regulation, function and expression in HCC were further investigated. Ligand-activated AR was recruited to the CCRK promoter and increased CCRK expression. AR-induced cell cycle progression was abrogated by siRNA-mediated knockdown of CCRK. On the contrary, over-expression of CCRK rescued the G1 arrest induced by AR knockdown. Ectopic CCRK expression in human immortal liver cells induced anchorage-dependent and -independent growth and tumor formation in immunodeficient mice, whereas CCRK inhibition decreased HCC cell growth in vitro and in vivo; demonstrating the strong oncogenic capacity of CCRK in HCC. Mechanistically, CCRK activated β-catenin/T-cell factor (TCF) signaling through phosphorylation of glycogen synthase kinase-3β to increase the expression of downstream pro-proliferative genes, cyclin D1 and epidermal growth factor receptor. Inhibition of β-catenin/TCF signaling significantly attenuated CCRK-induced cell cycle progression, colony formation and tumorigenicity. Conversely, HCC cell growth inhibition by CCRK knockdown was rescued by constitutively active form of β-catenin or TCF. Importantly, AR, CCRK, and active β-catenin were markedly over-expressed and positively correlated among each other in HCC specimens (p < 0.001). Furthermore, CCRK over-expression was significantly associated with tumor staging and poor disease-free survival of patients (p < 0.05), emphasizing the clinical importance of CCRK in HCC. In conclusion, our findings reveal a novel interplay between AR and β-catenin where activated AR transcriptionally up-regulates CCRK expression, thereby activating β-catenin/TCF signaling to induce aberrant cell proliferation. Dissection of this highly activated AR-CCRK-β-catenin/TCF axis sheds new mechanistic insight into hepatocarcinogenesis and provides novel therapeutic targets for the treatment of this and other male-predominant cancers. Acknowledgements: This study was partially supported by the Research Grant Council General Research Fund (462710) and the Direct Grant from the Chinese University of Hong Kong. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 Apr 2-6; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2011;71(8 Suppl):Abstract nr 2170. doi:10.1158/1538-7445.AM2011-2170
Clinical Gastroenterology and Hepatology | 2014
Zhuo Yu; Yueqiu Gao; Hai Feng; Yingying Lee; May S. Li; Yuan Tian; Minnie Y.Y. Go; Dae-Yeul Yu; Yue-Sun Cheung; Paul B.S. Lai; Jun Yu; Vincent Wai-Sun Wong; Joseph J.Y. Sung; Henry Lik-Yuen Chan; Alfred S.L. Cheng
Gastroenterology | 2011
Alfred S.L. Cheng; May S. Li; Wei Kang; Jian-Liang Chou; Yuen Yee Cheng; Tim H M Huang; Jun Yu; Ka Fai To; Joseph J.Y. Sung; Michael W.Y. Chan; Francis K.L. Chan
Gastroenterology | 2011
Alfred S.L. Cheng; May S. Li; Jonathan Gabriel Sung; Vivian Y. Shin; Michael W.Y. Chan; Ka Fai To; Jun Yu; Joseph J.Y. Sung