Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maya Leabman is active.

Publication


Featured researches published by Maya Leabman.


Nature | 2014

Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients

Roy S. Herbst; Marcin Kowanetz; Gregg Fine; Omid Hamid; Michael S. Gordon; Jeffery A. Sosman; David F. McDermott; John D. Powderly; Scott N. Gettinger; Holbrook Kohrt; Leora Horn; Donald P. Lawrence; Sandra Rost; Maya Leabman; Yuanyuan Xiao; Ahmad Mokatrin; Hartmut Koeppen; Priti Hegde; Ira Mellman; Daniel S. Chen; F. Stephen Hodi

The development of human cancer is a multistep process characterized by the accumulation of genetic and epigenetic alterations that drive or reflect tumour progression. These changes distinguish cancer cells from their normal counterparts, allowing tumours to be recognized as foreign by the immune system. However, tumours are rarely rejected spontaneously, reflecting their ability to maintain an immunosuppressive microenvironment. Programmed death-ligand 1 (PD-L1; also called B7-H1 or CD274), which is expressed on many cancer and immune cells, plays an important part in blocking the ‘cancer immunity cycle’ by binding programmed death-1 (PD-1) and B7.1 (CD80), both of which are negative regulators of T-lymphocyte activation. Binding of PD-L1 to its receptors suppresses T-cell migration, proliferation and secretion of cytotoxic mediators, and restricts tumour cell killing. The PD-L1–PD-1 axis protects the host from overactive T-effector cells not only in cancer but also during microbial infections. Blocking PD-L1 should therefore enhance anticancer immunity, but little is known about predictive factors of efficacy. This study was designed to evaluate the safety, activity and biomarkers of PD-L1 inhibition using the engineered humanized antibody MPDL3280A. Here we show that across multiple cancer types, responses (as evaluated by Response Evaluation Criteria in Solid Tumours, version 1.1) were observed in patients with tumours expressing high levels of PD-L1, especially when PD-L1 was expressed by tumour-infiltrating immune cells. Furthermore, responses were associated with T-helper type 1 (TH1) gene expression, CTLA4 expression and the absence of fractalkine (CX3CL1) in baseline tumour specimens. Together, these data suggest that MPDL3280A is most effective in patients in which pre-existing immunity is suppressed by PD-L1, and is re-invigorated on antibody treatment.


Journal of Immunology | 2009

Engineering Human IgG1 Affinity to Human Neonatal Fc Receptor: Impact of Affinity Improvement on Pharmacokinetics in Primates

Yik Andy Yeung; Maya Leabman; Jonathan S. Marvin; Julia Qiu; Camellia W. Adams; Samantha Lien; Melissa A. Starovasnik; Henry B. Lowman

The pH-dependent binding of Igs to the neonatal FcR (FcRn) plays a critical role in the in vivo homeostasis of IgGs. Modulating the interaction between Fc and FcRn through protein engineering is one method for improving the pharmacokinetics of therapeutic Abs. Recent studies disputed the direct relationship between increasing FcRn affinity and improved pharmacokinetic properties. In this work, we studied the pharmacokinetics of two human IgG1 Fc variants in cynomolgus monkey to further clarify the affinity-pharmacokinetic relationship. First, we report a number of novel Fc point mutations and combination variants, including some with primate-specific FcRn-binding improvements. By studying these variants along with some previously described variants across a wide range of affinities, we discovered a direct correlation of pH 6 affinity improvements with neutral pH improvements, suggesting that all of the tested variants exhibit similar pH dependency in FcRn binding. We then evaluated the pharmacokinetics of variants N434A and N434W, which, respectively, gave ∼4- and 80-fold improvements in pH 6-binding affinity to both human and nonhuman primate FcRn. Surprisingly, clearance of N434W was similar to that of wild type. N434W is the first variant studied in primates that exhibits significant binding to FcRn at pH 7.4, and its clearance substantiates the principle that too much affinity improvement, i.e., beyond that of N434W, does not yield improved pharmacokinetics. In contrast, N434A exhibited a ∼2-fold decrease in clearance in cynomolgus monkey, supporting the notion that modest increases in pH 6 FcRn affinity can result in improved pharmacokinetics in primates.


Science Translational Medicine | 2011

Amelioration of Type 2 Diabetes by Antibody-Mediated Activation of Fibroblast Growth Factor Receptor 1

Ai-Luen Wu; Ganesh Kolumam; Scott Stawicki; Yongmei Chen; Jun Li; Jose Zavala-Solorio; Khanhky Phamluong; Bo Feng; Li Li; Scot A. Marsters; Lance Kates; Nicholas van Bruggen; Maya Leabman; Anne Wong; David West; Howard M. Stern; Elizabeth Luis; Hok Seon Kim; Daniel G. Yansura; Andrew S. Peterson; Ellen Filvaroff; Yan Wu; Junichiro Sonoda

Antibody-mediated activation of fibroblast growth factor receptor 1 reverses the diabetic phenotype in mice, likely by affecting brown adipose tissues. Getting at Brown Fat It’s fun to indulge in holiday cheer, if only a holiday miracle allowed one to avoid the often-linked weight gain. At the molecular level, obesity and type 2 diabetes can be linked by the fibroblast growth factor (FGF) family of proteins and their receptors (FGFRs), with some factors showing disease-reversing capabilities. For instance, overweight, diabetic mice treated with FGF21 regain normal metabolism and lose weight, even without spending hours on a treadmill. However, attempts to use this fat-burning factor in humans have not been successful, owing to poor pharmacokinetics as well as concerns over negative effects of modified FGF21 proteins. In this issue, Wu and colleagues describe an antibody-based FGF21 mimic that circumvents these limitations to overcome metabolic disease in mice. The authors reasoned that robust drugs that closely mimic FGF21 function would similarly exert antidiabetic effects. Using phage display technology, Wu et al. identified monoclonal antibodies (R1MAbs) that were specifically targeted tissues that play key roles in diabetes and obesity, including adipose (fat) tissue. In contrast to FGF21, which binds several forms of the FGFR throughout the body, the phage-derived R1MAbs bound only to FGFR1—a receptor present in the pancreas and in brown and white adipose tissues. Diabetic mice with high blood sugar (hyperglycemia) were injected once with either R1MAbs or a control antibody. Within 1 week, blood glucose concentrations in the R1MAb-treated mice were normalized and remained at lower levels compared to placebo-treated mice for more than 1 month without reaching dangerously low blood glucose concentrations (hypoglycemia). The R1MAbs also helped the diabetic mice to lose weight, indicating that this antibody agonist of FGFR1 is a dual-action drug for both diabetes and obesity. Wu et al. also shed light on the mechanism of action of their R1MAbs, showing that they work via FGFR homodimerization in brown adipose tissue. With improved pharmacokinetics over FGF21, in addition to a specific receptor-targeting mechanism, these R1MAbs could enter human clinical trials for diabetes and other obesity-related diseases in the near future. Unfortunately, a miracle drug won’t be available in time for the holidays, so perhaps, this year, opt for the sugar-free egg nog. Clinical use of recombinant fibroblast growth factor 21 (FGF21) for the treatment of type 2 diabetes and other disorders linked to obesity has been proposed; however, its clinical development has been challenging owing to its poor pharmacokinetics. Here, we describe an alternative antidiabetic strategy using agonistic anti-FGFR1 (FGF receptor 1) antibodies (R1MAbs) that mimic the metabolic effects of FGF21. A single injection of R1MAb into obese diabetic mice induced acute and sustained amelioration of hyperglycemia, along with marked improvement in hyperinsulinemia, hyperlipidemia, and hepatosteatosis. R1MAb activated the mitogen-activated protein kinase pathway in adipose tissues, but not in liver, and neither FGF21 nor R1MAb improved glucose clearance in lipoatrophic mice, which suggests that adipose tissues played a central role in the observed metabolic effects. In brown adipose tissues, both FGF21 and R1MAb induced phosphorylation of CREB (cyclic adenosine 5′-monophosphate response element–binding protein), and mRNA expression of PGC-1α (peroxisome proliferator–activated receptor-γ coactivator 1α) and the downstream genes associated with oxidative metabolism. Collectively, we propose FGFR1 in adipose tissues as a major functional receptor for FGF21, as an upstream regulator of PGC-1α, and as a compelling target for antibody-based therapy for type 2 diabetes and other obesity-associated disorders.


mAbs | 2013

Effects of altered FcγR binding on antibody pharmacokinetics in cynomolgus monkeys.

Maya Leabman; Y. Gloria Meng; Robert F. Kelley; Laura DeForge; Kyra J. Cowan; Suhasini Iyer

Antibody interactions with Fcγ receptors (FcγRs), like FcγRIIIA, play a critical role in mediating antibody effector functions and thereby contribute significantly to the biologic and therapeutic activity of antibodies. Over the past decade, considerable work has been directed towards production of antibodies with altered binding affinity to FcγRs and evaluation of how the alterations modulate their therapeutic activity. This has been achieved by altering glycosylation status at N297 or by engineering modifications in the crystallizable fragment (Fc) region. While the effects of these modifications on biologic activity and efficacy have been examined, few studies have been conducted to understand their effect on antibody pharmacokinetics (PK). We present here a retrospective analysis in which we characterize the PK of three antibody variants with decreased FcγR binding affinity caused by amino acid substitutions in the Fc region (N297A, N297G, and L234A/L235A) and three antibody variants with increased FcγRIIIA binding affinity caused by afucosylation at N297, and compare their PK to corresponding wild type antibody PK in cynomolgus monkeys. For all antibodies, PK was examined at a dose that was known to be in the linear range. Since production of the N297A and N297G variants in Chinese hamster ovary cells results in aglycosylated antibodies that do not bind to FcγRs, we also examined the effect of expression of an aglycosylated antibody, without sequence change(s), in E. coli. All the variants demonstrated similar PK compared with that of the wild type antibodies, suggesting that, for the six antibodies presented here, altered FcγR binding affinity does not affect PK.


mAbs | 2016

Preclinical pharmacokinetics, pharmacodynamics, tissue distribution, and tumor penetration of anti-PD-L1 monoclonal antibody, an immune checkpoint inhibitor

Rong Deng; Daniela Bumbaca; Pastuskovas Cv; Boswell Ca; West D; Kyra J. Cowan; Henry Chiu; McBride J; Johnson C; Xin Y; Koeppen H; Maya Leabman; Suhasini Iyer

ABStract MPDL3280A is a human monoclonal antibody that targets programmed cell death-1 ligand 1 (PD-L1), and exerts anti-tumor activity mainly by blocking PD-L1 interaction with programmed cell death-1 (PD-1) and B7.1. It is being investigated as a potential therapy for locally advanced or metastatic malignancies. The purpose of the study reported here was to characterize the pharmacokinetics, pharmacodynamics, tissue distribution and tumor penetration of MPDL3280A and/or a chimeric anti-PD-L1 antibody PRO304397 to help further clinical development. The pharmacokinetics of MPDL3280A in monkeys at 0.5, 5 and 20 mg·kg−1 and the pharmacokinetics / pharmacodynamics of PRO304397 in mice at 1, 3 10 mg·kg−1 were determined after a single intravenous dose. Tissue distribution and tumor penetration for radiolabeled PRO304397 in tumor-bearing mouse models were determined. The pharmacokinetics of MPDL3280A and PRO304397 were nonlinear in monkeys and mice, respectively. Complete saturation of PD-L1 in blood in mice was achieved at serum concentrations of PRO304397 above ∼0.5 µg·mL−1. Tissue distribution and tumor penetration studies of PRO304397 in tumor-bearing mice indicated that the minimum tumor interstitial to plasma radioactivity ratio was ∼0.3; saturation of target-mediated uptake in non–tumor tissues and desirable exposure in tumors were achieved at higher serum concentrations, and the distribution into tumors was dose-and time-dependent. The biodistribution data indicated that the efficacious dose is mostly likely higher than that estimated based on simple pharmacokinetics/pharmacodynamics in blood. These data also allowed for estimation of the target clinical dose for further development of MPDL3280A.


mAbs | 2014

Critical role of bioanalytical strategies in investigation of clinical PK observations, a Phase I case study

Kun Peng; Keyang Xu; Luna Liu; Robert Hendricks; Reginald Delarosa; Rich Erickson; Nageshwar Budha; Maya Leabman; An Song; Surinder Kaur; Saloumeh Kadkhodayan Fischer

RG7652 is a human immunoglobulin 1 (IgG1) monoclonal antibody (mAb) targeting proprotein convertase subtilisin/kexin type 9 (PCSK9) and is designed for the treatment of hypercholesterolemia. A target-binding enzyme-linked immunosorbent assay (ELISA) was developed to measure RG7652 levels in human serum in a Phase I study. Although target-binding assay formats are generally used to quantify free therapeutic, the actual therapeutic species being measured are affected by assay conditions, such as sample dilution and incubation time, and levels of soluble target in the samples. Therefore, in the presence of high concentrations of circulating target, the choice of reagents and assay conditions can have a significant effect on the observed pharmacokinetic (PK) profiles. Phase I RG7652 PK analysis using the ELISA data resulted in a nonlinear dose normalized exposure. An investigation was conducted to characterize the ELISA to determine whether the assay format and reagents may have contributed to the PK observation. In addition, to confirm the ELISA results, a second orthogonal method, liquid chromatography tandem mass spectrometry (LC-MS/MS) using a signature peptide as surrogate, was developed and implemented. A subset of PK samples, randomly selected from half of the subjects in the 6 single ascending dose (SAD) cohorts in the Phase I clinical study, was analyzed with the LC-MS/MS assay, and the data were found to be comparable to the ELISA data. This paper illustrates the importance of reagent characterization, as well as the benefits of using an orthogonal approach to eliminate bioanalytical contributions when encountering unexpected observations.


Clinical Cardiology | 2017

A phase 1 study to evaluate the safety and LDL cholesterol–lowering effects of RG7652, a fully human monoclonal antibody against proprotein convertase subtilisin/kexin type 9

Amos Baruch; Diana Luca; Robert Kahn; Kyra J. Cowan; Maya Leabman; Nageshwar Budha; Cecilia P.C. Chiu; Yan Wu; Daniel Kirchhofer; Andrew S. Peterson; John C. Davis; Whittemore G. Tingley

Proprotein convertase subtilisin/kexin type 9 (PCSK9) downregulates low‐density lipoprotein (LDL) receptors, thereby leading to a rise in circulating LDL cholesterol (LDL‐C). RG7652 is a fully human monoclonal antibody against PCSK9. This placebo‐controlled, phase 1 ascending‐dose study in healthy subjects evaluated the safety of RG7652 and its efficacy as a potential LDL‐C–lowering drug.


Toxicological Sciences | 2014

Combined Administration of RG7652, a Recombinant Human Monoclonal Antibody Against PCSK9, and Atorvastatin Does Not Result in Reduction of Immune Function

Thomas Gelzleichter; Wendy G. Halpern; Roy Erwin; Amos Baruch; Maya Leabman; Abigail S. Forrest; Christina M. Satterwhite; Kun Peng; Jennifer Chilton; Dale Stevens

RG7652 is a human IgG1 monoclonal antibody designed to inhibit proprotein convertase subtilisin/kexin type 9 (PCSK9) binding to hepatic low density lipoprotein receptor (LDL-r), thereby blocking PCSK9-mediated degradation of LDL-r. This therapeutic candidate is under development for the prevention of cardiovascular mortality and morbidity in dyslipidemic patients. The primary objective of this study was to evaluate the potential immunotoxicological effects of RG7652 when given to cynomolgus monkeys either alone or in combination with a daily oral dose of atorvastatin. Administration of RG7652 via subcutaneous injection every other week for 12 weeks (a total of seven doses), daily oral doses of atorvastatin (total of 85 doses), and combinations of each up to 15 and 20 mg/kg/dose, respectively, were well tolerated and there was no evidence of alteration in immune function. Administration of pharmacologically relevant doses of RG7652 in combination with atorvastatin to healthy monkeys does not result in clinically meaningful immunosuppression as measured by T-cell dependent antibody responses, natural killer cell activity, immunophenotype, or delayed type hypersensitivity. The only pharmacologically mediated changes observed during the dosing period were the anticipated changes in circulating cholesterol.


Heart | 2013

GW24-e2907 Effects of RG7652, a fully human mAb against proprotein convertase subtilisin/kexin type 9, on LDL-c: a Phase I, randomised, double-blind, placebo-controlled, single- and multiple-dose study

Whittemore G. Tingley; Diana Luca; Maya Leabman; Nageshwar Budha; Robert Kahn; Amos Baruch; Kyra J. Cowan; John C. Davis

Objectives Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates hepatic LDL receptors, playing a key role in cholesterol metabolism. Gain of function genetic mutations cause autosomal dominant hypercholesterolaemia, while nonsense mutations lower LDL-c and the risk of coronary events. RG7652 (MPSK3169A) is a fully human IgG1 monoclonal antibody (mAb) directed against PCSK9. This first-in-human study evaluated safety, tolerability, pharmacokinetics, pharmacodynamics, and efficacy in healthy individuals with elevated LDL-c. Methods This Phase I study tested single and multiple doses of RG7652 and placebo given subcutaneously to 80 healthy volunteers with elevated serum LDL-c concentrations. Subjects entered six ascending, single-dose (SD) and four multiple-dose (MD) cohorts allocated 6 active: 2 placebo. Two MD cohorts included atorvastatin therapy (40 mg daily) prior to administration of study drug. Following cohort safety reviews, escalation to the next higher dose cohort continued. The primary efficacy endpoint was change in LDL-c 2 weeks after final dose of study drug, with safety follow-up occurring during Weeks 8–16. Results Eighty subjects (mean age 45 years, range 19-64; 48% male) with mean LDL-c of 162 mg/dL (4.2 mmol/L) were randomised. RG7652 reduced mean LDL-c by as much as 90 mg/dL (60%) from baseline, with a dose-dependent effect that appeared to saturate at the highest doses. The average reduction in LDL-c at Day 15 in SD and Day 36 in MD was > 40 mg/dL in all cohorts other than the lowest dose. RG7652 had similar LDL-c lowering effects and kinetics when added to atorvastatin. No dose-limiting safety effects were identified and no subjects discontinued study drug for adverse events (AEs). Thirty-seven AEs, all mild, were attributed to study drug: 27 in 14 RG7652 subjects; 10 in 6 placebo subjects. Conclusions The anti-PCSK9 mAb, RG7652, safely decreased LDL-c in healthy volunteers with elevated LDL-c as monotherapy and in combination with atorvastatin. The results support further testing of RG7652 in dyslipidaemic patients.


Journal of Clinical Oncology | 2013

A study of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic tumors.

Roy S. Herbst; Michael S. Gordon; Gregg Fine; Jeffrey A. Sosman; Jean-Charles Soria; Omid Hamid; John D. Powderly; Howard A. Burris; Ahmad Mokatrin; Marcin Kowanetz; Maya Leabman; Maria Anderson; Daniel S. Chen; F. Stephen Hodi

Collaboration


Dive into the Maya Leabman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge