Mayte Blay
Rovira i Virgili University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mayte Blay.
The FASEB Journal | 2004
Josep Maria del Bas; Juan Fernández-Larrea; Mayte Blay; Anna Ardévol; Maria Salvado; Lluís Arola; Cinta Bladé
Moderate consumption of red wine reduces risk of death from cardiovascular disease. The polyphenols in red wine are ultimately responsible for this effect, exerting antiatherogenic actions through their antioxidant capacities and modulating intracellular signaling pathways and transcriptional activities. Lipoprotein metabolism is crucial in atherogenesis, and liver is the principal organ controlling lipoprotein homeostasis. This study was intended to identify the primary effects of procyanidins, the most abundant polyphenols in red wine, on both plasma lipoprotein profile and the expression of genes controlling lipoprotein homeostasis in the liver. We show that procyanidins lowered plasma triglyceride, free fatty acids, apolipoprotein B (apoB), LDL‐cholesterol and nonHDL:nonLDL‐cholesterol levels and slightly increased HDL‐cholesterol. Liver mRNA levels of small heterodimer partner (SHP), cholesterol 7α‐hydroxylase (CYP7A1), and cholesterol biosynthetic enzymes increased, whereas those of apoAII, apoCI, and apoCIII decreased. Lipoprotein lipase (LPL) mRNA levels increased in muscle and decreased in adipose tissue. In conclusion, procyanidins improve the atherosclerotic risk index in the postprandial state, inducing in the liver the overexpression of CYP7A1 (suggesting an increase of cholesterol elimination via bile acids) and SHP, a nuclear receptor emerging as a key regulator of lipid homeostasis at the transcriptional level. These results could explain, at least in part, the beneficial long‐term effects associated with moderate red wine consumption.
Journal of Nutritional Biochemistry | 2011
Ximena Terra; Victor Pallarès; Anna Ardévol; Cinta Bladé; Juan Fernández-Larrea; Gerard Pujadas; Josepa Salvadó; Lluís Arola; Mayte Blay
Chronic low-grade inflammation in obesity is characterized by macrophage accumulation in white adipose tissue (WAT) and abnormal cytokine production. We tested the hypothesis that grape-seed procyanidin extract (PE), with known anti-inflammatory and antioxidant effects, would improve local and systemic inflammation in diet-induced obesity rats. First, we analyzed the preventive effects of procyanidins (30 mg/kg per day) on rats fed a 60% kcal fat diet for 19 weeks. Second, we induced cafeteria diet obesity for 13 weeks to investigate the corrective effects of two PE doses (25 and 50 mg/kg per day) for 10 and 30 days. In the preventive model, PE group had reduced not only body weight but also plasmatic systemic markers of inflammation tumor necrosis factor-α (TNF-α) and C-reactive protein (CRP). The PE preventive treatment significantly showed an increased adiponectin expression and decreased TNF-α, interleukin-6 and CRP expression in mesenteric WAT and muscle TNF-α. A reduced NF-κB activity in liver is also observed which can be related to low expression rates of hepatic inflammatory markers found in PE group. Finally, PE dietary supplementation is linked to a reduced expression of Emr1 (specific marker of macrophage F4/80), which suggests a reduced macrophage infiltration of WAT. In the corrective model, however, only the high dose of PE reduced CRP plasma levels in the short treatment without changes in plasmatic TNF-α. In conclusion, orally ingested PE helps preventing imbalanced obesity cytokine pattern, but its corrective effects need to be further investigated. The dietary regular intake of food or drinks containing procyanidins might help prevent low-grade inflammatory-related diseases.
Journal of Nutritional Biochemistry | 2010
Gemma Montagut; Cinta Bladé; Mayte Blay; Juan Fernández-Larrea; Gerard Pujadas; M. Josepa Salvadó; Lluís Arola; Montserrat Pinent; Anna Ardévol
Flavonoids are beneficial compounds against risk factors for metabolic syndrome, but their effects and the mechanisms on glucose homeostasis modulation are not well defined. In the present study, we first checked the efficacy of grapeseed procyanidin extract (GSPE) for stimulating glucose uptake in insulin-resistant 3T3-L1 adipocytes. Results show that when resistance is induced with chronic insulin treatment, GSPE maintain a higher stimulating capacity than insulin. In contrast, when dexamethasone is used as the resistance-inducing agent, GSPE is less effective. Next we evaluated how effective different GSPE treatments are at improving glucose metabolism in hyperinsulinemic animals (fed a cafeteria diet). GSPE reduced plasma insulin levels. The lower dose (25 mg GSPE/kg body weight per day) administered for 30 days improved the HOmeostasis Model Assessment-insulin resistance index. This was accompanied by down-regulation of Pparg2, Glut4 and Irs1 in mesenteric white adipose tissue. Similarly, a chronic GSPE treatment of insulin-resistant 3T3-L1 adipocytes down-regulated the mRNA levels of those adipocyte markers, although cells were still able to respond to the acute stimulation of glucose uptake. In summary, 25 mg/kg body weight per day of GSPE has a positive long-term effect on glucose homeostasis, and GSPE could be targeted at adipose tissue, where it might directly stimulate glucose uptake. This work also highlights the need to carefully consider the bioactive dose, since a higher dose does not necessarily correlate to a greater positive effect.
Journal of Nutritional Biochemistry | 2010
Gemma Montagut; Sheela Onnockx; Montserrat Vaqué; Cinta Bladé; Mayte Blay; Juan Fernández-Larrea; Gerard Pujadas; M. Josepa Salvadó; Lluís Arola; Isabelle Pirson; Anna Ardévol; Montserrat Pinent
Procyanidins are bioactive flavonoid compounds from fruits and vegetables that possess insulinomimetic properties, decreasing hyperglycaemia in streptozotocin-diabetic rats and stimulating glucose uptake in insulin-sensitive cell lines. Here we show that the oligomeric structures of a grape-seed procyanidin extract (GSPE) interact and induce the autophosphorylation of the insulin receptor in order to stimulate the uptake of glucose. However, their activation differs from insulin activation and results in differences in the downstream signaling. Oligomers of GSPE phosphorylate protein kinase B at Thr308 lower than insulin does, according to the lower insulin receptor activation by procyanidins. On the other hand, they phosphorylate Akt at Ser473 to the same extent as insulin. Moreover, we found that procyanidins phosphorylate p44/p42 and p38 MAPKs much more than insulin does. These results provide further insight into the molecular signaling mechanisms used by procyanidins, pointing to Akt and MAPK proteins as key points for GSPE-activated signaling pathways. Moreover, the differences between GSPE and insulin might help us to understand the wide range of biological effects that procyanidins have.
Molecular Nutrition & Food Research | 2009
Josep Maria Del Bas; Marie-Louise Ricketts; Montserrat Vaqué; Esther Sala; Helena Quesada; Anna Ardévol; M. Josepa Salvadó; Mayte Blay; Lluís Arola; David D. Moore; Gerard Pujadas; Juan Fernández-Larrea; Cinta Bladé
Consumption of dietary flavonoids has been associated with reduced mortality and risk of cardiovascular disease, partially by reducing triglyceridemia. We have previously reported that a grape seed procyanidin extract (GSPE) reduces postprandial triglyceridemia in normolipidemic animals signaling through the orphan nuclear receptor small heterodimer partner (SHP) a target of the bile acid receptor farnesoid X receptor (FXR). Our aim was to elucidate whether FXR mediates the hypotriglyceridemic effect of procyanidins. In FXR-driven luciferase expression assays GSPE dose-dependently enhanced FXR activity in the presence of chenodeoxycholic acid. GSPE gavage reduced triglyceridemia in wild type mice but not in FXR-null mice, revealing FXR as an essential mediator of the hypotriglyceridemic actions of procyanidins in vivo. In the liver, GSPE downregulated, in an FXR-dependent manner, the expression of the transcription factor steroid response element binding protein 1 (SREBP1) and several SREBP1 target genes involved in lipogenesis, and upregulated ApoA5 expression. Altogether, our results indicate that procyanidins lower triglyceridemia following the same pathway as bile acids: activation of FXR, transient upregulation of SHP expression and subsequent downregulation of SREBP1 expression. This study adds dietary procyanidins to the arsenal of FXR ligands with potential therapeutic use to combat hypertriglyceridemia, type 2 diabetes and metabolic syndrome.
Molecular Nutrition & Food Research | 2008
Josep Maria Del Bas; Marie Louise Ricketts; Isabel Baiges; Helena Quesada; Anna Ardévol; Maria Josepa Salvadó; Gerard Pujadas; Mayte Blay; Lluís Arola; Cinta Bladé; David D. Moore; Juan Fernández-Larrea
Hypertriglyceridemia is an independent risk factor in the development of cardiovascular diseases, and we have previously reported that oral administration of a grape seed procyanidin extract (GSPE) drastically decreases plasma levels of triglycerides (TG) and apolipoprotein B (ApoB) in normolipidemic rats, with a concomitant induction in the hepatic expression of the nuclear receptor small heterodimer partner (NR0B2/SHP). Our objective in this study was to elucidate whether SHP is the mediator of the reduction of TG-rich ApoB-containing lipoproteins triggered by GSPE. We show that GSPE inhibited TG and ApoB secretion in human hepatocarcinoma HepG2 cells and had and hypotriglyceridemic effect in wild-type mouse. The TG-lowering action of GSPE was abolished in HepG2 cells transfected with a SHP-specific siRNA and in a SHP-null mouse. Moreover, in mouse liver, GSPE downregulated several lipogenic genes, including steroid response element binding protein 1c (SREBP-1c), and upregulated carnitine palmitoyltransferase-1A (CPT-1A) and apolipoprotein A5 (ApoA5), in a SHP-dependent manner. In HepG2 cells GSPE also inhibited ApoB secretion, but in a SHP-independent manner. In conclusion, SHP is a key mediator of the hypotriglyceridemic response triggered by GSPE. This novel signaling pathway of procyanidins through SHP may be relevant to explain the health effects ascribed to the regular consumption of dietary flavonoids.
Critical Reviews in Food Science and Nutrition | 2006
Montse Pinent; Cinta Bladé; M. Josepa Salvadó; Mayte Blay; Gerard Pujadas; Juan Fernández-Larrea; Lluís Arola; Anna Ardévol
Procyanidins, a class of flavonoids, have clear and well-defined beneficial effects against several pathologies including cardiovascular heart disease. Now, studies in vivo are revealing the effects of procyanidins against obesity, where they prevent weight gain and adipose tissue mass increase, and against diabetes and insulin resistance, where they act as antihiperglycemic agents. Several mechanisms may be responsible for these effects. One of these, due to the key role of adipose tissue in the development of obesity and insulin resistance, is their effect on adipocytes. In this review we compile the studies that indicate a protective role for procyanidins in obesity and insulin resistance, focusing on their effects on the adipocyte, where procyanidins modify lipid synthesis, lipid degradation, glucose uptake, and adipose differentiation.
Biochemical Journal | 2012
Neus Martínez-Micaelo; Noemi González-Abuín; Ximena Terra; Cristóbal Richart; Anna Ardévol; Monserrat Pinent; Mayte Blay
The inflammatory response has been implicated in the pathogenesis of many chronic diseases. Along these lines, the modulation of inflammation by consuming bioactive food compounds, such as ω-3 fatty acids or procyanidins, is a powerful tool to promote good health. In the present study, the administration of DHA (docosahexaenoic acid) and B1, B2 and C1 procyanidins, alone or in combination, prevented the inflammatory response induced by the LPS (lipopolysaccharide) endotoxin in human macrophages and brought them to the homoeostatic state. DHA and B1 were strong and selective negative regulators of cyclo-oxygenase 1 activity, with IC50 values of 13.5 μM and 8.0 μM respectively. Additionally, B2 and C1 were selective inhibitors of pro-inflammatory cyclo-oxygenase 2 activity, with IC50 values of 9.7 μM and 3.3 μM respectively. Moreover, DHA and procyanidins prevented the activation of the NF-κB (nuclear factor κB) cascade at both early and late stages with shared mechanisms. These included inhibiting IκBα (inhibitor of NF-κB α) phosphorylation, inducing the cytoplasmic retention of pro-inflammatory NF-κB proteins through p105 (NF-κB1) overexpression, favouring the nuclear translocation of the p50-p50 transcriptional repressor homodimer instead of the p50-p65 pro-inflammatory heterodimer, inhibiting binding of NF-κB DNA to κB sites and, finally, decreasing the release of NF-κB-regulated cytokines and prostaglandins. In conclusion, DHA and procyanidins are strong and selective inhibitors of cyclo-oxygenase activity and NF-κB activation through a p105/p50-dependent regulatory mechanism.
Free Radical Biology and Medicine | 2013
Victor Pallarès; Anabel Fernández-Iglesias; Lídia Cedó; Anna Castell-Auví; Montserrat Pinent; Anna Ardévol; Maria Salvado; Santiago Garcia-Vallvé; Mayte Blay
Acute inflammation is a response to injury, infection, tissue damage, or shock. Bacterial lipopolysaccharide (LPS) is an endotoxin implicated in triggering sepsis and septic shock, and LPS promotes the inflammatory response, resulting in the secretion of proinflammatory and anti-inflammatory cytokines such as the interleukins (IL-6, IL-1β, and IL-10) and tumor necrosis factor-α by the immune cells. Furthermore, nitric oxide and reactive oxygen species levels increase rapidly, which is partially due to the activation of inducible nitric oxide synthase in several tissues in response to inflammatory stimuli. Previous studies have shown that procyanidins, polyphenols present in foods such as apples, grapes, cocoa, and berries, have several beneficial properties against inflammation and oxidative stress using several in vitro and in vivo models. In this study, the anti-inflammatory and antioxidant effects of two physiological doses and two pharmaceutical doses of grape seed procyanidin extract (GSPE) were analyzed using a rat model of septic shock by the intraperitoneal injection of LPS derived from Escherichia coli. The high nutritional (75mg/kg/day) and the high pharmacological doses (200mg/kg/day) of GSPE showed anti-inflammatory effects by decreasing the proinflammatory marker NOx in the plasma, red blood cells, spleen, and liver. Moreover, the high pharmacological dose also downregulated the genes Il-6 and iNos; and the high nutritional dose decreased the glutathione ratio (GSSG/total glutathione), further illustrating the antioxidant capability of GSPE. In conclusion, several doses of GSPE can alleviate acute inflammation triggered by LPS in rats at the systemic and local levels when administered for as few as 15 days before the injection of endotoxin.
Journal of Agricultural and Food Chemistry | 2012
Noemi González-Abuín; Neus Martínez-Micaelo; Mayte Blay; Gerard Pujadas; Santiago Garcia-Vallvé; Montserrat Pinent; Anna Ardévol
Dipeptidyl-peptidase 4 (DPP4) inhibitors are among the newest treatments against type 2 diabetes. Since some flavonoids modulate DPP4 activity, we evaluated whether grape seed-derived procyanidins (GSPEs), which are antihyperglycemic, modulate DPP4 activity and/or expression. In vitro inhibition assays showed that GSPEs inhibit pure DPP4. Chronic GSPE treatments in intestinal human cells (Caco-2) showed a decrease of DPP4 activity and gene expression. GSPE was also assayed in vivo. Intestinal but not plasmatic DPP4 activity and gene expression were decreased by GSPE in healthy and diet-induced obese animals. Healthy rats also showed glycemia improvement after oral glucose consumption but not after an intraperitoneal glucose challenge. In genetically obese rats, only DPP4 gene expression was down-regulated. Thus, procyanidin inhibition of intestinal DPP4 activity, either directly and/or via gene expression down-regulation, could be responsible for some of their effects in glucose homeostasis.