Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Victor Pallarès is active.

Publication


Featured researches published by Victor Pallarès.


Journal of Nutritional Biochemistry | 2011

Modulatory effect of grape-seed procyanidins on local and systemic inflammation in diet-induced obesity rats

Ximena Terra; Victor Pallarès; Anna Ardévol; Cinta Bladé; Juan Fernández-Larrea; Gerard Pujadas; Josepa Salvadó; Lluís Arola; Mayte Blay

Chronic low-grade inflammation in obesity is characterized by macrophage accumulation in white adipose tissue (WAT) and abnormal cytokine production. We tested the hypothesis that grape-seed procyanidin extract (PE), with known anti-inflammatory and antioxidant effects, would improve local and systemic inflammation in diet-induced obesity rats. First, we analyzed the preventive effects of procyanidins (30 mg/kg per day) on rats fed a 60% kcal fat diet for 19 weeks. Second, we induced cafeteria diet obesity for 13 weeks to investigate the corrective effects of two PE doses (25 and 50 mg/kg per day) for 10 and 30 days. In the preventive model, PE group had reduced not only body weight but also plasmatic systemic markers of inflammation tumor necrosis factor-α (TNF-α) and C-reactive protein (CRP). The PE preventive treatment significantly showed an increased adiponectin expression and decreased TNF-α, interleukin-6 and CRP expression in mesenteric WAT and muscle TNF-α. A reduced NF-κB activity in liver is also observed which can be related to low expression rates of hepatic inflammatory markers found in PE group. Finally, PE dietary supplementation is linked to a reduced expression of Emr1 (specific marker of macrophage F4/80), which suggests a reduced macrophage infiltration of WAT. In the corrective model, however, only the high dose of PE reduced CRP plasma levels in the short treatment without changes in plasmatic TNF-α. In conclusion, orally ingested PE helps preventing imbalanced obesity cytokine pattern, but its corrective effects need to be further investigated. The dietary regular intake of food or drinks containing procyanidins might help prevent low-grade inflammatory-related diseases.


Free Radical Biology and Medicine | 2013

Grape seed procyanidin extract reduces the endotoxic effects induced by lipopolysaccharide in rats

Victor Pallarès; Anabel Fernández-Iglesias; Lídia Cedó; Anna Castell-Auví; Montserrat Pinent; Anna Ardévol; Maria Salvado; Santiago Garcia-Vallvé; Mayte Blay

Acute inflammation is a response to injury, infection, tissue damage, or shock. Bacterial lipopolysaccharide (LPS) is an endotoxin implicated in triggering sepsis and septic shock, and LPS promotes the inflammatory response, resulting in the secretion of proinflammatory and anti-inflammatory cytokines such as the interleukins (IL-6, IL-1β, and IL-10) and tumor necrosis factor-α by the immune cells. Furthermore, nitric oxide and reactive oxygen species levels increase rapidly, which is partially due to the activation of inducible nitric oxide synthase in several tissues in response to inflammatory stimuli. Previous studies have shown that procyanidins, polyphenols present in foods such as apples, grapes, cocoa, and berries, have several beneficial properties against inflammation and oxidative stress using several in vitro and in vivo models. In this study, the anti-inflammatory and antioxidant effects of two physiological doses and two pharmaceutical doses of grape seed procyanidin extract (GSPE) were analyzed using a rat model of septic shock by the intraperitoneal injection of LPS derived from Escherichia coli. The high nutritional (75mg/kg/day) and the high pharmacological doses (200mg/kg/day) of GSPE showed anti-inflammatory effects by decreasing the proinflammatory marker NOx in the plasma, red blood cells, spleen, and liver. Moreover, the high pharmacological dose also downregulated the genes Il-6 and iNos; and the high nutritional dose decreased the glutathione ratio (GSSG/total glutathione), further illustrating the antioxidant capability of GSPE. In conclusion, several doses of GSPE can alleviate acute inflammation triggered by LPS in rats at the systemic and local levels when administered for as few as 15 days before the injection of endotoxin.


Journal of Nutritional Biochemistry | 2012

Procyanidins modify insulinemia by affecting insulin production and degradation

Anna Castell-Auví; Lídia Cedó; Victor Pallarès; M. Teresa Blay; Montserrat Pinent; M. José Motilva; Santiago Garcia-Vallvé; Gerard Pujadas; Pierre Maechler; Anna Ardévol

Previous studies from our research group have suggested that procyanidins modify glycemia and insulinemia. The aim of this work was to evaluate the effects of procyanidins on β-cell functionality in a nonpathological system. Four groups of healthy rats were studied. The animals were given daily acute doses of grape seed procyanidin extract (GSPE) for different time periods and at different daily amounts. A β-cell line (INS-1E) was treated with 25 mg GSPE/L for 24 h to identify possible mechanisms of action for the procyanidins. In vivo experiments showed that different doses of GSPE affected insulinemia in different ways by modifying β-cell functionality and/or insulin degradation. The islets isolated from rats that were treated with 25 mg GSPE/kg of body weight for 45 days exhibited a limited response to glucose stimulation. In addition, insulin gene expression, insulin synthesis and expression of genes related to insulin secretion were all down-regulated. In vitro studies revealed that GSPE decreased the ability of β-cells to secrete insulin in response to glucose. GSPE increased glucose uptake in β-cells under high-glucose conditions but impaired glucose-induced mitochondrial hyperpolarization, decreased adenosine triphosphate (ATP) synthesis and altered cellular membrane potentials. GSPE also modified Glut2, glucokinase and Ucp2 gene expression as well as altered the expression of hepatic insulin-degrading enzyme (Ide), thereby altering insulin degradation. At some doses, procyanidins changed β-cell functionality by modifying insulin synthesis, secretion and degradation under nonpathological conditions. Membrane potentials and Ide provide putative targets for procyanidins to induce these effects.


Food Chemistry | 2013

Grape seed procyanidin extract modulates proliferation and apoptosis of pancreatic beta-cells.

Lídia Cedó; Anna Castell-Auví; Victor Pallarès; Mayte Blay; Anna Ardévol; Lluís Arola; Montserrat Pinent

Grape seed procyanidin extract (GSPE) modulates glucose homeostasis and insulinemia in several animal models. Under pathological conditions, insulin levels are dependent on pancreatic beta-cell functionality, as well as on the beta-cell mass expansion or apoptosis in the pancreas. In this study, we analysed the effects of GSPE on modulating apoptosis and proliferation in beta-cells. We tested the effects of GSPE in the INS-1E pancreatic beta-cell line, either under basal or altered conditions with high glucose, insulin or palmitate levels. GSPE enhanced the pro-apoptotic effect of high glucose and showed clear antiproliferative effects under high glucose, insulin and palmitate conditions. These antiproliferative effects are likely due to high molecular weight compounds contained in the extract. GSPE also modulated pro- and anti-apoptotic markers in the pancreas of rats fed a cafeteria diet, with the effect depending on the dose of GSPE and duration of treatment. Thus, GSPE is able to modulate apoptosis and proliferation of beta-cells under altered, but not basal, conditions.


British Journal of Nutrition | 2012

The effects of a cafeteria diet on insulin production and clearance in rats

Anna Castell-Auví; Lídia Cedó; Victor Pallarès; Mayte Blay; Anna Ardévol; Montserrat Pinent

The aim of the present study was to determine the effects of a cafeteria diet on the function and apoptosis of the pancreas, and the activity and expression of the insulin-degrading enzyme (IDE). Female Wistar rats were fed either with a cafeteria diet or a control diet for 17 weeks, and blood and tissues were then collected for analysis. The cafeteria diet-treated rats had higher plasma insulin and C-peptide levels (P<0·05), showing increased insulin secretion by the pancreas. Insulin protein and gene expression levels were higher in the pancreas of obese rats, as was its transcriptional controller, pancreatic duodenal homeobox 1 (P<0·05). Feeding a cafeteria diet down-regulated the gene expression of the anti-apoptotic marker B-cell/lymphoma 2 (BCL2), and up-regulated the protein levels of BCL2-associated X protein, a pro-apoptotic marker (P<0·05). The cafeteria diet caused lipid accumulation in the pancreas and modified the expression of key genes that control lipid metabolism. To assay whether insulin clearance was also modified, we checked the activity of the IDE, one of the enzymes responsible for insulin clearance. We found increased liver IDE activity (P<0·05) in the cafeteria diet-fed animals, which could, in part, be due to an up-regulation of its gene expression. Conversely, IDE gene expression was unmodified in the kidney and adipose tissue; although when the adipose tissue weight was considered, the insulin clearance potential was higher in the cafeteria diet-treated rats. In conclusion, treatment with a cafeteria diet for 17 weeks in rats mimicked a pre-diabetic state, with ectopic lipid accumulation in the pancreas, and increased the IDE-mediated insulin clearance capability.


Journal of Nutritional Biochemistry | 2013

Grape seed procyanidins improve β-cell functionality under lipotoxic conditions due to their lipid-lowering effect.

Anna Castell-Auví; Lídia Cedó; Victor Pallarès; Mayte Blay; Montserrat Pinent; Anna Ardévol

Procyanidins have positive effects on glucose metabolism in conditions involving slightly disrupted glucose homeostasis, but it is not clear how procyanidins interact with β-cells. In this work, we evaluate the effects of procyanidins on β-cell functionality under an insulin-resistance condition. After 13 weeks of cafeteria diet, female Wistar rats were treated with 25 mg of grape seed procyanidin extract (GSPE)/kg of body weight (BW) for 30 days. To determine the possible mechanisms of action of procyanidins, INS-1E cells were separately incubated in high-glucose, high-insulin and high-oleate media to reproduce the conditions the β-cells were subjected to during the cafeteria diet feeding. In vivo experiments showed that chronic GSPE treatment decreased insulin production, since C-peptide levels and insulin protein levels in plasma were lower than those of cafeteria-fed rats, as were insulin and Pdx1 mRNA levels in the pancreas. GSPE effects observed in vivo were reproduced in INS-1E cells cultured with high oleate for 3 days. GSPE treatment significantly reduces triglyceride content in β-cells treated with high oleate and in the pancreas of cafeteria-fed rats. Moreover, gene expression analysis of the pancreas of cafeteria-fed rats revealed that procyanidins up-regulated the expression of Cpt1a and down-regulated the expression of lipid synthesis-related genes such as Fasn and Srebf1. Procyanidin treatment counteracted the decrease of AMPK protein levels after cafeteria treatment. Procyanidins cause a lack of triglyceride accumulation in β-cells. This counteracts its negative effects on insulin production, allowing for healthy levels of insulin production under hyperlipidemic conditions.


Food Chemistry | 2012

Pancreatic islet proteome profile in Zucker fatty rats chronically treated with a grape seed procyanidin extract

Lídia Cedó; Anna Castell-Auví; Victor Pallarès; Ceereena Ubaida Mohien; Isabel Baiges; Mayte Blay; Anna Ardévol; Montserrat Pinent

Grape seed procyanidin extract (GSPE) has been reported to modify glucose metabolism and β-cell functionality through its lipid-lowering effects in a diet-induced obesity model. The objective of the present study was to evaluate the effects of chronically administrated GSPE on the proteomic profile of pancreatic islets from Zucker fatty (ZF) rats. An isobaric tag for relative and absolute quantitation (iTRAQ) experiment was conducted and 31 proteins were found to be differentially expressed in ZF rats treated with GSPE compared to untreated ZF rats. Of these proteins, five subcategories of biological processes emerged: hexose metabolic processes, response to hormone stimulus, apoptosis and cell death, translation and protein folding, and macromolecular complex assembly. Gene expression analysis supported the role of the first three biological processes, concluding that GSPE limits insulin synthesis and secretion and modulates factors involved in apoptosis, but these molecular changes are not sufficient to counteract the genetic background of the Zucker model at a physiological level.


Nutrition and Cancer | 2014

Gallic acid is an active component for the anticarcinogenic action of grape seed procyanidins in pancreatic cancer cells.

Lídia Cedó; Anna Castell-Auví; Victor Pallarès; Alba Macià; Mayte Blay; Anna Ardévol; Maria-José Motilva; Montserrat Pinent

The aim of the present work was to evaluate the effects of a grape seed procyanidin extract (GSPE) on proliferation and apoptosis in the pancreatic adenocarcinoma cell line MIA PaCa-2 and identify the components of the extract with higher activity. The effects of the extract were analyzed on the proliferation and apoptosis processes in MIA PaCa-2 cells, as well as in the levels of the apoptosis markers Bcl-2 and Bax, the mitochondrial membrane potential, and reactive oxygen species levels. Finally, the components of the extract with higher effects were elucidated using enriched fractions of the extract and pure compounds. The results showed that GSPE inhibits cell proliferation and increases apoptosis in MIA PaCa-2 cells, which is primarily mediated by the downregulation of the antiapoptotic protein Bcl-2 and the depolarization of the mitochondrial membrane. GSPE also reduced the formation of reactive oxygen species. The component of the extract that possesses the highest antiproliferative and proapoptotic activity was gallic acid. In conclusion, GSPE acts as anticarcinogenic in MIA PaCa-2 cells, with gallic acid as the major single active constituent of the extract.


Journal of Agricultural and Food Chemistry | 2013

Procyanidins modulate microRNA expression in pancreatic islets.

Anna Castell-Auví; Lídia Cedó; Jamileh Movassat; Bernard Portha; Fátima Sánchez-Cabo; Victor Pallarès; Mayte Blay; Montserrat Pinent; Anna Ardévol

Procyanidins modulate glucose metabolism, partly due to its effects on pancreas. Given the role of microRNAs (miRNAs) in the regulation of diabetes and the fact that flavonoids modulate miRNAs in other tissues, we hypothesized that procyanidins might target miRNAs in the pancreas. We investigated the miRNA expression profile in pancreatic islets isolated from rats treated with a daily dose of grape seed procyanidin extract (GSPE) (25 mg/kg of body weight) for 45 days. The miRWalk database identified putative target genes of these miRNAs. We found that GSPE altered significantly the expression of miR-1249, miR-483, miR-30c-1*, and miR-3544. In silico prediction studies suggested that ion transport and response to glucose are among the regulated pathways. As a conclusion, this is the first study showing that procyanidins can also exert their bioactivity on pancreatic islets by modifying the miRNA expression pattern.


International journal of food science | 2013

Grape Seed Procyanidin Extract Improves Insulin Production but Enhances Bax Protein Expression in Cafeteria-Treated Male Rats

Lídia Cedó; Anna Castell-Auví; Victor Pallarès; Mayte Blay; Anna Ardévol; Montserrat Pinent

In a previous study, the administration of a grape seed procyanidin extract (GSPE) in female Wistar rats improved insulin resistance, reduced insulin production, and modulated apoptosis biomarkers in the pancreas. Considering that pharmacokinetic and pharmacodynamic parameters in females are different from these parameters in males, the aim of the present study was to evaluate the effects of GSPE on male Wistar cafeteria-induced obese rats. The results have confirmed that the cafeteria model is a robust model mimicking a prediabetic state, as these rats display insulin resistance, increased insulin synthesis and secretion, and increased apoptosis in the pancreas. In addition, GSPE treatment (25 mg/kg of GSPE for 21 days) in male rats improves insulin resistance and counteracts the cafeteria-induced effects on insulin synthesis. However, the administration of the extract enhances the cafeteria-induced increase in Bax protein levels, suggesting increased apoptosis. This result contradicts previous results from cafeteria-fed female rats, in which GSPE seemed to counteract the increased apoptosis induced by the cafeteria diet.

Collaboration


Dive into the Victor Pallarès's collaboration.

Top Co-Authors

Avatar

Montserrat Pinent

Rovira i Virgili University

View shared research outputs
Top Co-Authors

Avatar

Anna Ardévol

Rovira i Virgili University

View shared research outputs
Top Co-Authors

Avatar

Mayte Blay

Rovira i Virgili University

View shared research outputs
Top Co-Authors

Avatar

Lluís Arola

Rovira i Virgili University

View shared research outputs
Top Co-Authors

Avatar

Gerard Pujadas

Rovira i Virgili University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge