Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mayumi Ishihara is active.

Publication


Featured researches published by Mayumi Ishihara.


Molecular & Cellular Proteomics | 2010

Comparison of Methods for Profiling O-Glycosylation HUMAN PROTEOME ORGANISATION HUMAN DISEASE GLYCOMICS/PROTEOME INITIATIVE MULTI-INSTITUTIONAL STUDY OF IgA1

Yoshinao Wada; Anne Dell; Stuart M. Haslam; Bérangère Tissot; Kevin Canis; Parastoo Azadi; Malin Bäckström; Catherine E. Costello; Gunnar C. Hansson; Yoshiyuki Hiki; Mayumi Ishihara; Hiromi Ito; Kazuaki Kakehi; Niclas G. Karlsson; Catherine E. Hayes; Koichi Kato; Nana Kawasaki; Kay Hooi Khoo; Kunihiko Kobayashi; Daniel Kolarich; Akihiro Kondo; Carlito B. Lebrilla; Miyako Nakano; Hisashi Narimatsu; Jan Novak; Milos V. Novotny; Erina Ohno; Nicolle H. Packer; Elizabeth Palaima; Matthew B. Renfrow

The Human Proteome Organisation Human Disease Glycomics/Proteome Initiative recently coordinated a multi-institutional study that evaluated methodologies that are widely used for defining the N-glycan content in glycoproteins. The study convincingly endorsed mass spectrometry as the technique of choice for glycomic profiling in the discovery phase of diagnostic research. The present study reports the extension of the Human Disease Glycomics/Proteome Initiatives activities to an assessment of the methodologies currently used for O-glycan analysis. Three samples of IgA1 isolated from the serum of patients with multiple myeloma were distributed to 15 laboratories worldwide for O-glycomics analysis. A variety of mass spectrometric and chromatographic procedures representative of current methodologies were used. Similar to the previous N-glycan study, the results convincingly confirmed the pre-eminent performance of MS for O-glycan profiling. Two general strategies were found to give the most reliable data, namely direct MS analysis of mixtures of permethylated reduced glycans in the positive ion mode and analysis of native reduced glycans in the negative ion mode using LC-MS approaches. In addition, mass spectrometric methodologies to analyze O-glycopeptides were also successful.


Molecular & Cellular Proteomics | 2009

Comparison of Methods for Profiling O-glycosylation: HUPO Human Disease Glycomics/Proteome Initiative Multi-Institutional Study of IgA1

Yoshinao Wada; Anne Dell; Stuart M. Haslam; Bérangère Tissot; Kevin Canis; Parastoo Azadi; Malin Bäckström; Catherine E. Costello; Gunnar C. Hansson; Yoshiyuki Hiki; Mayumi Ishihara; Hiromi Ito; Kazuaki Kakehi; Niclas G. Karlsson; Koichi Kato; Nana Kawasaki; Kay-Hooi Khoo; Kunihiko Kobayashi; Daniel Kolarich; Akihiro Kondo; Carlito B. Lebrilla; Miyako Nakano; Hisashi Narimatsu; Jan Novak; Milos V. Novotny; Erina Ohno; Nicolle H. Packer; Matthew B. Renfrow; Michiko Tajiri; Naoyuki Taniguchi

The Human Proteome Organisation Human Disease Glycomics/Proteome Initiative recently coordinated a multi-institutional study that evaluated methodologies that are widely used for defining the N-glycan content in glycoproteins. The study convincingly endorsed mass spectrometry as the technique of choice for glycomic profiling in the discovery phase of diagnostic research. The present study reports the extension of the Human Disease Glycomics/Proteome Initiatives activities to an assessment of the methodologies currently used for O-glycan analysis. Three samples of IgA1 isolated from the serum of patients with multiple myeloma were distributed to 15 laboratories worldwide for O-glycomics analysis. A variety of mass spectrometric and chromatographic procedures representative of current methodologies were used. Similar to the previous N-glycan study, the results convincingly confirmed the pre-eminent performance of MS for O-glycan profiling. Two general strategies were found to give the most reliable data, namely direct MS analysis of mixtures of permethylated reduced glycans in the positive ion mode and analysis of native reduced glycans in the negative ion mode using LC-MS approaches. In addition, mass spectrometric methodologies to analyze O-glycopeptides were also successful.


Cell Metabolism | 2011

Phosphate incorporation during glycogen synthesis and Lafora disease.

Vincent S. Tagliabracci; Christian Heiss; Chandra Karthik; Christopher J. Contreras; John Glushka; Mayumi Ishihara; Parastoo Azadi; Thomas D. Hurley; Peter J. Roach

Glycogen is a branched polymer of glucose that serves as an energy store. Phosphate, a trace constituent of glycogen, has profound effects on glycogen structure, and phosphate hyperaccumulation is linked to Lafora disease, a fatal progressive myoclonus epilepsy that can be caused by mutations of laforin, a glycogen phosphatase. However, little is known about the metabolism of glycogen phosphate. We demonstrate here that the biosynthetic enzyme glycogen synthase, which normally adds glucose residues to glycogen, is capable of incorporating the β-phosphate of its substrate UDP-glucose at a rate of one phosphate per approximately 10,000 glucoses, in what may be considered a catalytic error. We show that the phosphate in glycogen is present as C2 and C3 phosphomonoesters. Since hyperphosphorylation of glycogen causes Lafora disease, phosphate removal by laforin may thus be considered a repair or damage control mechanism.


Nature Communications | 2016

Genome analysis of three Pneumocystis species reveals adaptation mechanisms to life exclusively in mammalian hosts

Liang Ma; Zehua Chen; Da Wei Huang; Geetha Kutty; Mayumi Ishihara; Honghui Wang; Amr Abouelleil; Lisa R. Bishop; Emma Davey; Rebecca Deng; Xilong Deng; Lin Fan; Giovanna Fantoni; Michael C. Fitzgerald; Emile Gogineni; Jonathan M. Goldberg; Grace Handley; Xiaojun Hu; Charles Huber; Xiaoli Jiao; Joshua Z. Levin; Yueqin Liu; Pendexter Macdonald; Alexandre Melnikov; Castle Raley; Monica Sassi; Brad T. Sherman; Xiaohong Song; Sean Sykes; Bao Tran

Pneumocystis jirovecii is a major cause of life-threatening pneumonia in immunosuppressed patients including transplant recipients and those with HIV/AIDS, yet surprisingly little is known about the biology of this fungal pathogen. Here we report near complete genome assemblies for three Pneumocystis species that infect humans, rats and mice. Pneumocystis genomes are highly compact relative to other fungi, with substantial reductions of ribosomal RNA genes, transporters, transcription factors and many metabolic pathways, but contain expansions of surface proteins, especially a unique and complex surface glycoprotein superfamily, as well as proteases and RNA processing proteins. Unexpectedly, the key fungal cell wall components chitin and outer chain N-mannans are absent, based on genome content and experimental validation. Our findings suggest that Pneumocystis has developed unique mechanisms of adaptation to life exclusively in mammalian hosts, including dependence on the lungs for gas and nutrients and highly efficient strategies to escape both host innate and acquired immune defenses.


The EMBO Journal | 2009

Structure of the F-spondin domain of mindin, an integrin ligand and pattern recognition molecule

Yili Li; Chunzhang Cao; Wei Jia; Lily Yu; Min Mo; Qian Wang; Yuping Huang; Jae-Min Lim; Mayumi Ishihara; Lance Wells; Parastoo Azadi; Howard Robinson; You-Wen He; Li Zhang; Roy A. Mariuzza

Mindin (spondin‐2) is an extracellular matrix protein of unknown structure that is required for efficient T‐cell priming by dendritic cells. Additionally, mindin functions as a pattern recognition molecule for initiating innate immune responses. These dual functions are mediated by interactions with integrins and microbial pathogens, respectively. Mindin comprises an N‐terminal F‐spondin (FS) domain and C‐terminal thrombospondin type 1 repeat (TSR). We determined the structure of the FS domain at 1.8‐Å resolution. The structure revealed an eight‐stranded antiparallel β‐sandwich motif resembling that of membrane‐targeting C2 domains, including a bound calcium ion. We demonstrated that the FS domain mediates integrin binding and identified the binding site by mutagenesis. The mindin FS domain therefore represents a new integrin ligand. We further showed that mindin recognizes lipopolysaccharide (LPS) through its TSR domain, and obtained evidence that C‐mannosylation of the TSR influences LPS binding. Through these dual interactions, the FS and TSR domains of mindin promote activation of both adaptive and innate immune responses.


Scientific Reports | 2013

A serotonin-induced N-glycan switch regulates platelet aggregation

Charles P. Mercado; Maritza V. Quintero; Yicong Li; Preeti Singh; Alicia K. Byrd; Krajang Talabnin; Mayumi Ishihara; Parastoo Azadi; Nancy J. Rusch; Balagurunathan Kuberan; Luc Maroteaux; Fusun Kilic

Serotonin (5-HT) is a multifunctional signaling molecule that plays different roles in a concentration-dependent manner. We demonstrated that elevated levels of plasma 5-HT accelerate platelet aggregation resulting in a hypercoagulable state in which the platelet surface becomes occupied by several glycoproteins. Here we study the novel hypothesis that an elevated level of plasma 5-HT results in modification of the content of N-glycans on the platelet surface and this abnormality is associated with platelet aggregation. Mass spectrometry of total surface glycoproteins on platelets isolated from wild-type mice infused for 24 hours with saline or 5-HT revealed that the content of glycoproteins on platelets from 5-HT-infused mice switched from predominantly N-acetyl-neuraminic acid (Neu5Ac) to N-glycolyl-neuraminic acid (Neu5Gc). Cytidine monophosphate-N-acetylneuraminate hydroxylase (CMAH) synthesizes Neu5Gc from Neu5Ac. Up-regulation of Neu5Gc content on the platelet surface resulted from an increase in the catalytic function, not expression, of CMAH in platelets of 5-HT-infused mice. The highest level of Neu5Gc was observed in platelets of 5-HT-infused, 5-HT transporter-knock out mice, suggesting that the surface delineated 5-HT receptor on platelets may promote CMAH catalytic activity. These new findings link elevated levels of plasma 5-HT to altered platelet N-glycan content, a previously unrecognized abnormality that may favor platelet aggregation.


Biotechnology and Bioengineering | 2009

Production, purification, and characterization of human α1 proteinase inhibitor from Aspergillus niger

Liat Chill; Loc Trinh; Parastoo Azadi; Mayumi Ishihara; Roberto Sonon; Elena Karnaukhova; Yakir Ophir; Basil Golding; Joseph Shiloach

Human alpha one proteinase inhibitor (α1‐PI) was cloned and expressed in Aspergillus niger, filamentious fungus that can grow in defined media and can perform glycosylation. Submerged culture conditions were established using starch as carbon source, 30% dissolved oxygen concentration, pH 7.0 and 28°C. Eight milligrams per liter of active α1‐PI were secreted to the growth media in about 40 h. Controlling the protein proteolysis was found to be an important factor in the production. The effects of various carbon sources, pH and temperature on the production and stability of the protein were tested and the product was purified and characterized. Two molecular weights variants of the recombinant α1‐PI were produced by the fungus; the difference is attributed to the glycosylated part of the molecule. The two glycoproteins were treated with PNGAse F and the released glycans were analyzed by HPAEC, MALDI/TOF‐MS, NSI‐MSn, and GC‐MS. The MALDI and NSI‐ full MS spectra of permethylated N‐glycans revealed that the N‐glycans of both variants contain a series of high‐mannose type glycans with 5–20 hexose units. Monosaccharide analysis showed that these were composed of N‐acetylglucos‐amine, mannose, and galactose. Linkage analysis revealed that the galactosyl component was in the furanoic conformation, which was attaching in a terminal non‐reducing position. The Galactofuranose‐containing high‐mannnose type N‐glycans are typical structures, which recently have been found as part of several glycoproteins produced by Aspergillus niger. Biotechnol. Bioeng. 2009; 102: 828–844.


Journal of Biological Chemistry | 2015

Glycogen Phosphomonoester Distribution in Mouse Models of the Progressive Myoclonic Epilepsy, Lafora Disease

Christopher J. Contreras; Dyann M. Segvich; Christian Heiss; Mayumi Ishihara; Parastoo Azadi; Peter J. Roach

Background: Lafora disease is characterized by abnormal, hyperphosphorylated glycogen. Results: 20% of the total phosphate is present as a C6 phosphomonoester of glucose residues; this proportion is unchanged in glycogen from mouse models of Lafora disease. Conclusion: C6 phosphate is not the dominant phosphomonoester. Significance: C2, C3, or C6 phosphate could all contribute to aberrant glycogen structure. Glycogen is a branched polymer of glucose that acts as an energy reserve in many cell types. Glycogen contains trace amounts of covalent phosphate, in the range of 1 phosphate per 500–2000 glucose residues depending on the source. The function, if any, is unknown, but in at least one genetic disease, the progressive myoclonic epilepsy Lafora disease, excessive phosphorylation of glycogen has been implicated in the pathology by disturbing glycogen structure. Some 90% of Lafora cases are attributed to mutations of the EPM2A or EPM2B genes, and mice with either gene disrupted accumulate hyperphosphorylated glycogen. It is, therefore, of importance to understand the chemistry of glycogen phosphorylation. Rabbit skeletal muscle glycogen contained covalent phosphate as monoesters of C2, C3, and C6 carbons of glucose residues based on analyses of phospho-oligosaccharides by NMR. Furthermore, using a sensitive assay for glucose 6-P in hydrolysates of glycogen coupled with measurement of total phosphate, we determined the proportion of C6 phosphorylation in rabbit muscle glycogen to be ∼20%. C6 phosphorylation also accounted for ∼20% of the covalent phosphate in wild type mouse muscle glycogen. Glycogen phosphorylation in Epm2a−/− and Epm2b−/− mice was increased 8- and 4-fold compared with wild type mice, but the proportion of C6 phosphorylation remained unchanged at ∼20%. Therefore, our results suggest that C2, C3, and/or C6 phosphate could all contribute to abnormal glycogen structure or to Lafora disease.


Glycoconjugate Journal | 2016

Comparison of analytical methods for profiling N- and O-linked glycans from cultured cell lines : HUPO Human Disease Glycomics/Proteome Initiative multi-institutional study.

Hiromi Ito; Hiroyuki Kaji; Akira Togayachi; Parastoo Azadi; Mayumi Ishihara; Rudolf Geyer; Christina E. Galuska; Hildegard Geyer; Kazuaki Kakehi; Mitsuhiro Kinoshita; Niclas G. Karlsson; Chunsheng Jin; Koichi Kato; Hirokazu Yagi; Sachiko Kondo; Nana Kawasaki; Noritaka Hashii; Daniel Kolarich; Kathrin Stavenhagen; Nicolle H. Packer; Morten Thaysen-Andersen; Miyako Nakano; Naoyuki Taniguchi; Ayako Kurimoto; Yoshinao Wada; Michiko Tajiri; Pengyuan Yang; Weiqian Cao; Hong Li; Pauline M. Rudd

The Human Disease Glycomics/Proteome Initiative (HGPI) is an activity in the Human Proteome Organization (HUPO) supported by leading researchers from international institutes and aims at development of disease-related glycomics/glycoproteomics analysis techniques. Since 2004, the initiative has conducted three pilot studies. The first two were N- and O-glycan analyses of purified transferrin and immunoglobulin-G and assessed the most appropriate analytical approach employed at the time. This paper describes the third study, which was conducted to compare different approaches for quantitation of N- and O-linked glycans attached to proteins in crude biological samples. The preliminary analysis on cell pellets resulted in wildly varied glycan profiles, which was probably the consequence of variations in the pre-processing sample preparation methodologies. However, the reproducibility of the data was not improved dramatically in the subsequent analysis on cell lysate fractions prepared in a specified method by one lab. The study demonstrated the difficulty of carrying out a complete analysis of the glycome in crude samples by any single technology and the importance of rigorous optimization of the course of analysis from preprocessing to data interpretation. It suggests that another collaborative study employing the latest technologies in this rapidly evolving field will help to realize the requirements of carrying out the large-scale analysis of glycoproteins in complex cell samples.


PLOS ONE | 2013

Cytoprotective Effect of Recombinant Human Erythropoietin Produced in Transgenic Tobacco Plants

Farooqahmed S. Kittur; Mamudou Bah; Stephanie Archer-Hartmann; Chiu-Yueh Hung; Parastoo Azadi; Mayumi Ishihara; David C. Sane; Jiahua Xie

Asialo-erythropoietin, a desialylated form of human erythropoietin (EPO) lacking hematopoietic activity, is receiving increased attention because of its broader protective effects in preclinical models of tissue injury. However, attempts to translate its protective effects into clinical practice is hampered by unavailability of suitable expression system and its costly and limit production from expensive mammalian cell-made EPO (rhuEPOM) by enzymatic desialylation. In the current study, we took advantage of a plant-based expression system lacking sialylating capacity but possessing an ability to synthesize complex N-glycans to produce cytoprotective recombinant human asialo-rhuEPO. Transgenic tobacco plants expressing asialo-rhuEPO were generated by stably co-expressing human EPO and β1,4-galactosyltransferase (GalT) genes under the control of double CaMV 35S and glyceraldehyde-3-phosphate gene (GapC) promoters, respectively. Plant-produced asialo-rhuEPO (asialo-rhuEPOP) was purified by immunoaffinity chromatography. Detailed N-glycan analysis using NSI-FTMS and MS/MS revealed that asialo-rhuEPOP bears paucimannosidic, high mannose-type and complex N-glycans. In vitro cytoprotection assays showed that the asialo-rhuEPOP (20 U/ml) provides 2-fold better cytoprotection (44%) to neuronal-like mouse neuroblastoma cells from staurosporine-induced cell death than rhuEPOM (21%). The cytoprotective effect of the asialo-rhuEPOP was found to be mediated by receptor-initiated phosphorylation of Janus kinase 2 (JAK2) and suppression of caspase 3 activation. Altogether, these findings demonstrate that plants are a suitable host for producing cytoprotective rhuEPO derivative. In addition, the general advantages of plant-based expression system can be exploited to address the cost and scalability issues related to its production.

Collaboration


Dive into the Mayumi Ishihara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hanrui Zhang

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Krajang Talabnin

Suranaree University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chutima Talabnin

Suranaree University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge