Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mayumi Sasaki is active.

Publication


Featured researches published by Mayumi Sasaki.


Journal of Biological Chemistry | 2007

ABCA3 as a Lipid Transporter in Pulmonary Surfactant Biogenesis

Nobuhiro Ban; Yoshihiro Matsumura; Hiromichi Sakai; Yasukazu Takanezawa; Mayumi Sasaki; Hiroyuki Arai; Nobuya Inagaki

ABCA3 protein is expressed predominantly at the limiting membrane of the lamellar bodies in alveolar type II cells, and mutations in the ABCA3 gene cause lethal respiratory distress in newborn infants. To investigate the function of ABCA3 protein, we generated Abca3-deficient mice by targeting Abca3. Full-term Abca3–/– newborn pups died within an hour after birth because of acute respiratory failure. Ultrastructural analysis revealed abnormally dense lamellar body-like organelles and no normal lamellar bodies in Abca3–/– alveolar type II cells. TLC and electrospray ionization mass spectrometry analyses of lipids in the pulmonary interstitium showed that phosphatidylcholine and phosphatidylglycerol, which contain palmitic acid and are abundant in normal surfactant lipids, were dramatically decreased in Abca3–/– lung. These findings indicate that ABCA3 plays an essential role in pulmonary surfactant lipid metabolism and lamellar body biogenesis, probably by transporting these lipids as substrates.


Diabetes | 2011

Exendin-4 Suppresses Src Activation and Reactive Oxygen Species Production in Diabetic Goto-Kakizaki Rat Islets in an Epac-Dependent Manner

Eri Mukai; Shimpei Fujimoto; Hiroki Sato; Chitose Oneyama; Rieko Kominato; Yuichi Sato; Mayumi Sasaki; Yuichi Nishi; Masato Okada; Nobuya Inagaki

OBJECTIVE Reactive oxygen species (ROS) is one of most important factors in impaired metabolism secretion coupling in pancreatic β-cells. We recently reported that elevated ROS production and impaired ATP production at high glucose in diabetic Goto-Kakizaki (GK) rat islets are effectively ameliorated by Src inhibition, suggesting that Src activity is upregulated. In the present study, we investigated whether the glucagon-like peptide-1 signal regulates Src activity and ameliorates endogenous ROS production and ATP production in GK islets using exendin-4. RESEARCH DESIGN AND METHODS Isolated islets from GK and control Wistar rats were used for immunoblotting analyses and measurements of ROS production and ATP content. Src activity was examined by immunoprecipitation of islet lysates followed by immunoblotting. ROS production was measured with a fluorescent probe using dispersed islet cells. RESULTS Exendin-4 significantly decreased phosphorylation of Src Tyr416, which indicates Src activation, in GK islets under 16.7 mmol/l glucose exposure. Glucose-induced ROS production (16.7 mmol/l) in GK islet cells was significantly decreased by coexposure of exendin-4 as well as PP2, a Src inhibitor. The Src kinase–negative mutant expression in GK islets significantly decreased ROS production induced by high glucose. Exendin-4, as well as PP2, significantly increased impaired ATP elevation by high glucose in GK islets. The decrease in ROS production by exendin-4 was not affected by H-89, a PKA inhibitor, and an Epac-specific cAMP analog (8CPT-2Me-cAMP) significantly decreased Src Tyr416 phosphorylation and ROS production. CONCLUSIONS Exendin-4 decreases endogenous ROS production and increases ATP production in diabetic GK rat islets through suppression of Src activation, dependently on Epac.


FEBS Letters | 2007

ABCA3-mediated choline-phospholipids uptake into intracellular vesicles in A549 cells.

Yoshihiro Matsumura; Hiromichi Sakai; Mayumi Sasaki; Nobuhiro Ban; Nobuya Inagaki

ABCA3 is proposed to function as a lung surfactant lipid transporter. Here we report ABCA3‐dependent lipid uptake into intracellular vesicles in lung adenocarcinoma A549 cells. A549 cells stably expressing GFP‐tagged wild‐type ABCA3 (A549/ABCA3WT) had larger LAMP3‐positive vesicles than their parental cells as well as A549 cells expressing a Walker A motif mutant (A549/ABCA3N568D). The choline‐phospholipids level in A549/ABCA3WT was increased 1.25‐fold compared to that in A549 and A549/ABCA3N568D cells, while the cholesterol levels were similar. Sucrose gradient fractionation analysis in A549/ABCA3WT cells revealed that choline‐phospholipids were enriched in low‐density and nile red‐positive vesicles. Electronmicroscopic analysis showed multilamellar vesicles in A549/ABCA3WT cells. These results indicate that ABCA3 mediates ATP‐dependent choline‐phospholipids uptake into intracellular vesicles.


Journal of Biological Chemistry | 2007

ABCA2 Deficiency Results in Abnormal Sphingolipid Metabolism in Mouse Brain

Hiromichi Sakai; Yukiko Tanaka; Makoto Tanaka; Nobuhiro Ban; Katsuya Yamada; Yoshihiro Matsumura; Daisuke Watanabe; Mayumi Sasaki; Toru Kita; Nobuya Inagaki

ABCA2, a member of the ATP-binding cassette (ABC) transporter family, is localized mainly to late endosome/lysosomes of oligodendrocytes in brain, but the physiological role and function of ABCA2 are unknown. In this study, we generated mutant mice (ABCA2-null) by targeting the abca2 gene. ABCA2-null mice exhibited a phenotype including lower pregnancy rate and body weight, shorter latency period on the balance beam, and sensitization to environmental stress compared with wild type mice but no abnormality in the cytoarchitectonic and compact myelin structure or oligodendroglial differentiation. Lipid analysis of brain from 11 days to 64 weeks of age revealed significant accumulation of gangliosides along with reduced sphingomyelin (SM) from 4 weeks to 64 weeks of age and accumulation of cerebrosides and sulfatides at 64 weeks of age in ABCA2-null mice compared with wild type mice. In addition, a significant accumulation of the major ganglioside GM1 and reduced SM was detected in the myelin fraction of ABCA2-null brain. Comparison of ABCA2-null and wild type mice revealed weak ABCA2 immunoreactivity in some large pyramidal cells of wild type brain. These results suggest that ABCA2 is involved in the intracellular metabolism of sphingolipids in the brain, particularly SM and gangliosides in oligodendrocytes and certain neurons.


Biochemical Journal | 2005

Cloning of ABCA17, a novel rodent sperm-specific ABC (ATP-binding cassette) transporter that regulates intracellular lipid metabolism.

Nobuhiro Ban; Mayumi Sasaki; Hiromichi Sakai; Kazumitsu Ueda; Nobuya Inagaki

The A subclass of the ABC (ATP-binding cassette) transporter superfamily has a structural feature that distinguishes it from other ABC transporters, and is proposed to be involved in the transmembrane transport of endogenous lipids. Here we have cloned mouse and rat full-length cDNAs of ABCA17, a novel ABC transporter belonging to the A subclass. Mouse and rat ABCA17 proteins comprise 1733 and 1773 amino acid residues respectively, having 87.3% amino acid identity; mouse ABCA17 has amino acid identities of 55.3% and 36.7% with mouse ABCA3 and sea urchin ABCA respectively. RNA blot and quantitative real-time PCR analyses showed that ABCA17 mRNA is expressed exclusively in the testis. Examination of testis by in situ hybridization showed that ABCA17 mRNA is expressed in germ cells, mainly spermatocytes, in the seminiferous tubule. Immunoblot analysis using a specific antibody showed that ABCA17 is a protein of 200 kDa, and immunohistochemical analysis demonstrated that the protein is detected in the anterior head of sperm and elongated spermatids. ABCA17 was localized in the endoplasmic reticulum in transiently transfected HEK293 cells. Metabolic labelling analysis showed that intracellular esterified lipids, including cholesteryl esters, fatty acid esters and triacylglycerols, were significantly decreased in HEK293 cells stably expressing ABCA17 compared with untransfected cells. These results suggest that ABCA17 may play a role in regulating lipid composition in sperm.


Journal of Endocrinology | 2010

Rapamycin impairs metabolism-secretion coupling in rat pancreatic islets by suppressing carbohydrate metabolism

Makiko Shimodahira; Shimpei Fujimoto; Eri Mukai; Yasuhiko Nakamura; Yuichi Nishi; Mayumi Sasaki; Yuichi Sato; Hiroki Sato; Masaya Hosokawa; Kazuaki Nagashima; Yutaka Seino; Nobuya Inagaki

Rapamycin, an immunosuppressant used in human transplantation, impairs beta-cell function, but the mechanism is unclear. Chronic (24 h) exposure to rapamycin concentration dependently suppressed 16.7 mM glucose-induced insulin release from islets (1.65+/-0.06, 30 nM rapamycin versus 2.35+/-0.11 ng/islet per 30 min, control, n=30, P<0.01) without affecting insulin and DNA contents. Rapamycin also decreased alpha-ketoisocaproate-induced insulin release, suggesting reduced mitochondrial carbohydrate metabolism. ATP content in the presence of 16.7 mM glucose was significantly reduced in rapamycin-treated islets (13.42+/-0.47, rapamycin versus 16.04+/-0.46 pmol/islet, control, n=30, P<0.01). Glucose oxidation, which indicates the velocity of metabolism in the Krebs cycle, was decreased by rapamycin in the presence of 16.7 mM glucose (30.1+/-2.7, rapamycin versus 42.2+/-3.3 pmol/islet per 90 min, control, n=9, P<0.01). Immunoblotting revealed that the expression of complex I, III, IV, and V was not affected by rapamycin. Mitochondrial ATP production indicated that the respiratory chain downstream of complex II was not affected, but that carbohydrate metabolism in the Krebs cycle was reduced by rapamycin. Analysis of enzymes in the Krebs cycle revealed that activity of alpha-ketoglutarate dehydrogenase (KGDH), which catalyzes one of the slowest reactions in the Krebs cycle, was reduced by rapamycin (10.08+/-0.82, rapamycin versus 13.82+/-0.84 nmol/mg mitochondrial protein per min, control, n=5, P<0.01). Considered together, these findings indicate that rapamycin suppresses high glucose-induced insulin secretion from pancreatic islets by reducing mitochondrial ATP production through suppression of carbohydrate metabolism in the Krebs cycle, together with reduced KGDH activity.


Biochemical Journal | 2011

Role of mitochondrial phosphate carrier in metabolism-secretion coupling in rat insulinoma cell line INS-1

Yuichi Nishi; Shimpei Fujimoto; Mayumi Sasaki; Eri Mukai; Hiroki Sato; Yuichi Sato; Yumiko Tahara; Yasuhiko Nakamura; Nobuya Inagaki

In pancreatic β-cells, glucose-induced mitochondrial ATP production plays an important role in insulin secretion. The mitochondrial phosphate carrier PiC is a member of the SLC25 (solute carrier family 25) family and transports Pi from the cytosol into the mitochondrial matrix. Since intramitochondrial Pi is an essential substrate for mitochondrial ATP production by complex V (ATP synthase) and affects the activity of the respiratory chain, Pi transport via PiC may be a rate-limiting step for ATP production. We evaluated the role of PiC in metabolism-secretion coupling in pancreatic β-cells using INS-1 cells manipulated to reduce PiC expression by siRNA (small interfering RNA). Consequent reduction of the PiC protein level decreased glucose (10 mM)-stimulated insulin secretion, the ATP:ADP ratio in the presence of 10 mM glucose and elevation of intracellular calcium concentration in response to 10 mM glucose without affecting the mitochondrial membrane potential (Δψm) in INS-1 cells. In experiments using the mitochondrial fraction of INS-1 cells in the presence of 1 mM succinate, PiC down-regulation decreased ATP production at various Pi concentrations ranging from 0.001 to 10 mM, but did not affect Δψm at 3 mM Pi. In conclusion, the Pi supply to mitochondria via PiC plays a critical role in ATP production and metabolism-secretion coupling in INS-1 cells.


Diabetes | 2013

Reduction of Reactive Oxygen Species Ameliorates Metabolism-Secretion Coupling in Islets of Diabetic GK Rats by Suppressing Lactate Overproduction

Mayumi Sasaki; Shimpei Fujimoto; Yuichi Sato; Yuichi Nishi; Eri Mukai; Gen Yamano; Hiroki Sato; Yumiko Tahara; Kasane Ogura; Kazuaki Nagashima; Nobuya Inagaki

We previously demonstrated that impaired glucose-induced insulin secretion (IS) and ATP elevation in islets of Goto-Kakizaki (GK) rats, a nonobese model of diabetes, were significantly restored by 30–60-min suppression of endogenous reactive oxygen species (ROS) overproduction. In this study, we investigated the effect of a longer (12 h) suppression of ROS on metabolism-secretion coupling in β-cells by exposure to tempol, a superoxide (O2−) dismutase mimic, plus ebselen, a glutathione peroxidase mimic (TE treatment). In GK islets, both H2O2 and O2− were sufficiently reduced and glucose-induced IS and ATP elevation were improved by TE treatment. Glucose oxidation, an indicator of Krebs cycle velocity, also was improved by TE treatment at high glucose, whereas glucokinase activity, which determines glycolytic velocity, was not affected. Lactate production was markedly increased in GK islets, and TE treatment reduced lactate production and protein expression of lactate dehydrogenase and hypoxia-inducible factor 1α (HIF1α). These results indicate that the Warburg-like effect, which is characteristic of aerobic metabolism in cancer cells by which lactate is overproduced with reduced linking to mitochondria metabolism, plays an important role in impaired metabolism-secretion coupling in diabetic β-cells and suggest that ROS reduction can improve mitochondrial metabolism by suppressing lactate overproduction through the inhibition of HIF1α stabilization.


Hormone and Metabolic Research | 2010

Exendin-4 protects pancreatic beta cells from the cytotoxic effect of rapamycin by inhibiting JNK and p38 phosphorylation.

Yukiko Kawasaki; Shin-ichi Harashima; Mayumi Sasaki; Eri Mukai; Yoshio Nakamura; Norio Harada; Kentaro Toyoda; Akihiro Hamasaki; Shunsuke Yamane; Chizumi Yamada; Yuichiro Yamada; Yutaka Seino; Nobuya Inagaki

It has been reported that the immunosuppressant rapamycin decreases the viability of pancreatic beta cells. In contrast, exendin-4, an analogue of glucagon-like peptide-1, has been found to inhibit beta cell death and to increase beta cell mass. We investigated the effects of exendin-4 on the cytotoxic effect of rapamycin in beta cells. Incubation with 10 nM rapamycin induced cell death in 12 h in murine beta cell line MIN6 cells and Wistar rat islets, but not when coincubated with 10 nM exendin-4. Rapamycin was found to increase phosphorylation of c-Jun amino-terminal kinase (JNK) and p38 in 30 minutes in MIN6 cells and Wistar rat islets while exendin-4 decreased their phosphorylation. Akt and extracellular signal-regulated kinase (ERK) were not involved in the cytoprotective effect of exendin-4. These results indicate that exendin-4 may exert its protective effect against rapamycin-induced cell death in pancreatic beta cells by inhibiting JNK and p38 signaling.


Molecular Genetics and Metabolism | 2013

Exome sequencing identifies a new candidate mutation for susceptibility to diabetes in a family with highly aggregated type 2 diabetes

Daisuke Tanaka; Kazuaki Nagashima; Mayumi Sasaki; Shogo Funakoshi; Yasushi Kondo; Koichiro Yasuda; Akio Koizumi; Nobuya Inagaki

The aim of this study was to investigate the genetic background of familial clustering of diabetes using genome-wide linkage analysis combined with exome sequencing. We recruited a Japanese family with a 3-generation history of diabetes. The family comprised 16 members, 13 having been diagnosed with diabetes. Nine members had been diagnosed before the age of 40. Linkage analysis was performed assuming an autosomal dominant model. Linkage regions were observed on chromosomes 4q34, 5q11-q13, and 12p11-q22 and the logarithm of odds (LOD) scores were 1.80. To identify the susceptibility variants, we performed exome sequencing of an affected family member. We predicted that the familial clustering of diabetes is caused by a rare non-synonymous variant, and focused our analysis on non-synonymous variants absent in dbSNP131. Exome sequencing identified 10 such variants in the linkage regions, 7 of which were concordant with the affection status in the family. One hundred five normal subjects and 67 lean diabetes subjects were genotyped for the 7 variants; the only variant found to be significantly more frequent in the diabetes subjects than in the normal subjects was the N1072K variant of the early endosome antigen 1 (EEA1) gene (0 in normal subjects and 4 in diabetes subjects, p=0.022). We therefore propose that the N1072K variant of the EEA1 gene is a candidate mutation for susceptibility to diabetes in the Japanese population.

Collaboration


Dive into the Mayumi Sasaki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge