Mayuresh M. Abhyankar
University of Virginia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mayuresh M. Abhyankar.
Journal of Biological Chemistry | 2007
Mayuresh M. Abhyankar; Craig Urekar; P. Prabhakara Reddi
Regulation of cell type-specific gene transcription is central to cellular differentiation and development. During spermatogenesis, a number of testis-specific genes are expressed in a precise spatiotemporal order. How these genes remain silent in the somatic tissues is not well understood. Our previous studies using the round spermatid-specific mouse SP-10 gene, which codes for an acrosomal protein, revealed that its proximal promoter acts as an insulator and prevents expression in the somatic tissues. Here we report that the insulator tethers the SP-10 gene to the nuclear matrix in somatic tissues, sequestering the core promoter in the process, thus preventing transcription. In round spermatids where the SP-10 gene is expressed, this tethering is released. TAR DNA-binding protein of 43 kDa (TDP-43), previously shown to interact with the SP-10 insulator, was found to be in the 2 m NaCl-insoluble nuclear matrix fraction. TDP-43 prevented enhancer-promoter interactions when artificially recruited between the two by Gal4 strategy. Knockdown of TDP-43 using small interfering RNA released the enhancer-blocking effect of the SP-10 insulator in a stable cell culture model. Mutation of TDP-43 binding sites abolished this effect. Finally, a 50-bp subfragment of the SP-10 insulator, which includes TDP-43 binding sites, functioned as a minimal insulator in transgenic mice and silenced an otherwise ectopically expressed transgene in somatic tissues. The SP-10 insulator lacks CpG dinucleotides or CTCF binding sites. Thus, the present study characterized a novel vertebrate insulator in a physiological context and showed for the first time how a testis-specific gene is silenced in the somatic tissues by an insulator.
Eukaryotic Cell | 2008
Mayuresh M. Abhyankar; Amelia E. Hochreiter; Jessica Hershey; Clive Evans; Yan Zhang; Oswald Crasta; Bruno W. S. Sobral; Barbara J. Mann; William A. Petri; Carol A. Gilchrist
ABSTRACT The unicellular eukaryote Entamoeba histolytica is a human parasite that causes amebic dysentery and liver abscess. A genome-wide analysis of gene expression modulated by intestinal colonization and invasion identified an upregulated transcript that encoded a putative high-mobility-group box (HMGB) protein, EhHMGB1. We tested if EhHMGB1 encoded a functional HMGB protein and determined its role in control of parasite gene expression. Recombinant EhHMGB1 was able to bend DNA in vitro, a characteristic of HMGB proteins. Core conserved residues required for DNA bending activity in other HMGB proteins were demonstrated by mutational analysis to be essential for EhHMGB1 activity. EhHMGB1 was also able to enhance the binding of human p53 to its cognate DNA sequence in vitro, which is expected for an HMGB1 protein. Confocal microscopy, using antibodies against the recombinant protein, confirmed its nuclear localization. Overexpression of EhHMGB1 in HM1:IMSS trophozoites led to modulation of 33 transcripts involved in a variety of cellular functions. Of these, 20 were also modulated at either day 1 or day 29 in the mouse model of intestinal amebiasis. Notably, four transcripts with known roles in virulence, including two encoding Gal/GalNAc lectin light chains, were modulated in response to EhHMGB1 overexpression. We concluded that EhHMGB1 was a bona fide HMGB protein with the capacity to recapitulate part of the modulation of parasite gene expression seen during adaptation to the host intestine.
Vaccine | 2014
L. Barroso; Mayuresh M. Abhyankar; Zannatun Noor; K. Read; Karl Pedersen; R. White; Christopher B. Fox; William A. Petri; D. Lyerly
Entamoeba histolytica, which causes amebic colitis and liver abscess, is considered a major enteric pathogen in residents and travelers to developing countries where the disease is endemic. Interaction of this protozoan parasite with the intestine is mediated through the binding of the trophozoite stage to intestinal mucin and epithelium via a galactose and N-acetyl-d-galactosamine (Gal/GalNAc) lectin comprised of a disulfide linked heavy (ca. 180 kDa) and light chain (ca. 35 kDa) and a noncovalently bound intermediate subunit (ca. 150 kDa). Our efforts to develop a vaccine against this pathogen have focused on an internal 578 amino acid fragment, designated LecA, located within the cysteine-rich region of the heavy chain subunit because: (i) it is a major target of adherence-blocking antibodies of seropositive individuals and (ii) vaccination with his-tagged LecA provides protection in animal models. We developed a purification process for preparing highly purified non-tagged LecA using a codon-optimized gene expressed in Escherichia coli. The process consisted of: (i) cell lysis, collection and washing of inclusion bodies; (ii) solubilization and refolding of denatured LecA; and (iii) a polishing gel filtration step. The purified fragment existed primarily as a random coil with β-sheet structure, contained low endotoxin and nucleic acid, was highly immunoreactive, and elicited antibodies that recognized native lectin and that inhibited in vitro adherence of trophozoites to CHO cells. Immunization of CBA mice with LecA resulted in significant protection against cecal colitis. Our procedure yields sufficient amounts of highly purified LecA for future studies on stability, immunogenicity, and protection with protein-adjuvant formulations.
Infection and Immunity | 2014
Shannon N. Moonah; Mayuresh M. Abhyankar; Rashidul Haque; William A. Petri
ABSTRACT The host inflammatory response contributes to the tissue damage that occurs during amebic colitis, with tumor necrosis factor alpha (TNF-α) being a key mediator of the gut inflammation observed. Mammalian macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that plays an important role in the exacerbation of a wide range of inflammatory diseases, including colitis. We identified a MIF gene homolog in the Entamoeba histolytica genome, raising the question of whether E. histolytica MIF (EhMIF) has proinflammatory activity similar to that of mammalian MIF. In this report, we describe the first functional characterization of EhMIF. Antibodies were prepared against recombinantly expressed EhMIF and used to demonstrate that EhMIF is expressed as a 12-kDa protein localized to the cytoplasm of trophozoites. In a manner similar to that of mammalian MIF, EhMIF interacted with the MIF receptor CD74 and bound to macrophages. EhMIF induced interleukin-6 (IL-6) production. In addition, EhMIF enhanced TNF-α secretion by amplifying TNF-α production by lipopolysaccharide (LPS)-stimulated macrophages and by inhibiting the glucocorticoid-mediated suppression of TNF-α secretion. EhMIF was expressed during human infection, as evidenced by the presence of anti-EhMIF antibodies in the sera of children living in an area where E. histolytica infection is endemic. Anti-EhMIF antibodies did not cross-react with human MIF. The ability of EhMIF to modulate host macrophage function may promote an exaggerated proinflammatory immune response and contribute to the tissue damage seen in amebic colitis.
Infection and Immunity | 2016
Stacey L. Burgess; Mahmoud M. Saleh; Carrie A. Cowardin; Erica L. Buonomo; Zannatun Noor; Koji Watanabe; Mayuresh M. Abhyankar; Stephane Lajoie; Marsha Wills-Karp; William A. Petri
ABSTRACT Intestinal segmented filamentous bacteria (SFB) protect from ameba infection, and protection is transferable with bone marrow dendritic cells (BMDCs). SFB cause an increase in serum amyloid A (SAA), suggesting that SAA might mediate SFBs effects on BMDCs. Here we further explored the role of bone marrow in SFB-mediated protection. Transient gut colonization with SFB or SAA administration alone transiently increased the H3K27 histone demethylase Jmjd3, persistently increased bone marrow Csf2ra expression and granulocyte monocyte precursors (GMPs), and protected from ameba infection. Pharmacologic inhibition of Jmjd3 H3K27 demethylase activity during SAA treatment or blockade of granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling in SFB-colonized mice prevented GMP expansion, decreased gut neutrophils, and blocked protection from ameba infection. These results indicate that alteration of the microbiota and systemic exposure to SAA can influence myelopoiesis and susceptibility to amebiasis via epigenetic mechanisms. Gut microbiota-marrow communication is a previously unrecognized mechanism of innate protection from infection.
Vaccine | 2017
Mayuresh M. Abhyankar; Zannatun Noor; Mark A. Tomai; James Elvecrog; Christopher B. Fox; William A. Petri
Diarrheal infectious diseases represent a major cause of global morbidity and mortality. There is an urgent need for vaccines against diarrheal pathogens, especially parasites. Modern subunit vaccines rely on combining a highly purified antigen with an adjuvant to increase their efficacy. In the present study, we evaluated the ability of a nanoliposome adjuvant system to trigger a strong mucosal immune response to the Entamoeba histolytica Gal/GalNAc lectin LecA antigen. CBA/J mice were immunized with alum, emulsion or liposome based formulations containing synthetic TLR agonists. A liposome formulation containing TLR4 and TLR7/8 agonists was selected based on its ability to generate intestinal IgA, plasma IgG2a/IgG1, IFN-γ and IL-17A. Immunization with a mucosal prime followed by a parenteral boost generated a high mucosal IgA response that inhibited adherence of parasites to mammalian cells. Inclusion of the immune potentiator all-trans retinoic acid in the regimen further improved the mucosal IgA response. Immunization protected from infection with up to 55% efficacy. Our results show that a nanoliposome delivery system containing TLR agonists is a promising prospect for the development of vaccines against enteric pathogens, especially when a multifaceted immune response is desired.
PLOS Pathogens | 2017
Koji Watanabe; Carol A. Gilchrist; Jashim Uddin; Stacey L. Burgess; Mayuresh M. Abhyankar; Shannon N. Moonah; Zannatun Noor; Jeffrey R. Donowitz; Brittany N. Schneider; Tuhinur Arju; Emtiaz Ahmed; Mamun Kabir; Masud Alam; Rashidul Haque; Patcharin Pramoonjago; Borna Mehrad; William A. Petri
The disease severity of Entamoeba histolytica infection ranges from asymptomatic to life-threatening. Recent human and animal data implicate the gut microbiome as a modifier of E. histolytica virulence. Here we have explored the association of the microbiome with susceptibility to amebiasis in infants and in the mouse model of amebic colitis. Dysbiosis occurred symptomatic E. histolytica infection in children, as evidenced by a lower Shannon diversity index of the gut microbiota. To test if dysbiosis was a cause of susceptibility, wild type C57BL/6 mice (which are innately resistant to E. histiolytica infection) were treated with antibiotics prior to cecal challenge with E. histolytica. Compared with untreated mice, antibiotic pre-treated mice had more severe colitis and delayed clearance of E. histolytica. Gut IL-25 and mucus protein Muc2, both shown to provide innate immunity in the mouse model of amebic colitis, were lower in antibiotic pre-treated mice. Moreover, dysbiotic mice had fewer cecal neutrophils and myeloperoxidase activity. Paradoxically, the neutrophil chemoattractant chemokines CXCL1 and CXCL2, as well as IL-1β, were higher in the colon of mice with antibiotic-induced dysbiosis. Neutrophils from antibiotic pre-treated mice had diminished surface expression of the chemokine receptor CXCR2, potentially explaining their inability to migrate to the site of infection. Blockade of CXCR2 increased susceptibility of control non-antibiotic treated mice to amebiasis. In conclusion, dysbiosis increased the severity of amebic colitis due to decreased neutrophil recruitment to the gut, which was due in part to decreased surface expression on neutrophils of CXCR2.
Parasitology International | 2009
Mayuresh M. Abhyankar; Amelia E. Hochreiter; Sarah K. Connell; Carol A. Gilchrist; Barbara J. Mann; William A. Petri
The early branching eukaryote Entamoeba histolytica is a human parasite that is the etiologic agent of amebic dysentery and liver abscess. The sequencing of the E. histolytica genome combined with the development of an E. histolytica microarray has resulted in the identification of several distinct gene expression profiles associated with virulence. The function of many modulated transcripts is unknown and their role in pathogenicity is unclear. They however represent a pool of potential virulence factors that could be targets for the development of novel therapeutics. Efficient tools and methods to characterize these novel virulence-associated genes and proteins would be beneficial. Here we report the use of the Gateway((R)) cloning system to generate the E. histolytica expression vector pAH-DEST. To test the usefulness of this system, the vector was used to construct a plasmid containing a recombinant version of the locus EHI_144490, which encoded a protein of unknown function. The recombinant gene was expressed and the recombinant protein, which was strep-myc-tagged, showed a cytoplasmic localization in transfected trophozoites. This expression vector with the Gateway((R)) system should facilitate investigation into the functions of novel proteins in E. histolytica.
Annals of the New York Academy of Sciences | 2007
P. Prabhakara Reddi; Craig Urekar; Mayuresh M. Abhyankar; Sandeep A. Ranpura
Abstract: Testis‐specific promoters are unique in that relatively short proximal promoters of several genes have been shown to be capable of directing tissue‐ and cell‐type‐specific expression in transgenic mice. How such small promoter fragments perform the dual functions of maintaining a silenced state in somatic tissues and activating gene expression in the correct germ‐cell type in testis remains poorly understood. Studies from our laboratory using the round spermatid‐specific SP‐10 gene as an experimental model have provided some insights into the mechanisms involved. It was found that the proximal promoter of the SP‐10 gene acts as a chromatin insulator or boundary element in somatic tissues and prevents transcription of the SP‐10 gene. In round spermatids, the insulator function is relieved, thus facilitating the SP‐10 gene transcription. Insulators act as enhancer blockers and/or barriers to heterochromatin to protect the programmed expression of a gene. Typically, insulators are separable from promoters. In the case of the SP‐10 gene, however, the insulator overlaps the promoter and operates in a facultative manner. We hypothesize that the proximal promoters of some testis‐specific genes have adapted the insulator function to maintain transcriptional silence in the somatic tissues.
The Journal of Infectious Diseases | 2017
Renay Ngobeni; Mayuresh M. Abhyankar; Nona M. Jiang; Laura Farr; Amidou Samie; Rashidul Haque; Shannon N. Moonah
Understanding the mechanisms by which Entamoeba histolytica drives gut inflammation is critical for the development of improved preventive and therapeutic strategies. E. histolytica encodes a homolog of the human cytokine macrophage migration inhibitory factor (MIF). Here, we investigated the role of E. histolytica MIF (EhMIF) during infection. We found that the concentration of fecal EhMIF correlated with the level of intestinal inflammation in persons with intestinal amebiasis. Mice treated with antibodies that specifically block EhMIF had reduced chemokine expression and neutrophil infiltration in the mucosa. In addition to antibody-mediated neutralization, we used a genetic approach to test the effect of EhMIF on mucosal inflammation. Mice infected with parasites overexpressing EhMIF had increased chemokine expression, neutrophil influx, and mucosal damage. Together, these results uncover a specific parasite protein that increases mucosal inflammation, expands our knowledge of host-parasite interaction during amebic colitis, and highlights a potential immunomodulatory target.