Mayya Petrova
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mayya Petrova.
Archive | 2008
David A. Gilichinsky; Tatiana A. Vishnivetskaya; Mayya Petrova; E. V. Spirina; Vladimir Mamykin; Elizaveta Rivkina
Significant numbers of viable ancient microorganisms are known to be present within the permafrost. They have been isolated in both polar regions from the cores up to 400 m deep and ground temperatures of -27 C. The age of the cells corresponds to the longevity of the permanently frozen state of the soils, with the oldest cells dating back to {approx}3 million years in the Arctic, and {approx}5 million years in the Antarctic. They are the only life forms known to have retained viability over geological time. Thawing of the permafrost renews their physiological activity and exposes ancient life to modern ecosystems. Thus, the permafrost represents a stable and unique physicochemical complex, which maintains life incomparably longer than any other known habitats. If we take into account the depth of the permafrost layers, it is easy to conclude that they contain a total microbial biomass many times higher than that of the soil cover. This great mass of viable matter is peculiar to permafrost only.
Fems Microbiology Letters | 2009
Mayya Petrova; Zhosephine Gorlenko; Sofia Mindlin
A Psychrobacter psychrophilus strain resistant to tetracycline and streptomycin was isolated from a 15,000-35,000-year-old permafrost subsoil sediment sampled from the coast of the Eastern-Siberian Sea. The genes conferring antibiotic resistance were localized on an c. 30-kb pKLH80 plasmid. It was shown that the antibiotic resistance region of this plasmid has a mosaic structure and contains closely linked streptomycin resistance (strA-strB) and tetracycline resistance [tetR-tet(H)] genes, followed by a novel IS element (ISPpy1) belonging to the IS3 family. Both the strA-strB and tetR-tet(H) genes of pKLH80 were highly similar to those found in modern clinical bacterial isolates. It was shown that the ISPpy1 element of pKLH80 can direct translocation of the adjacent antibiotic resistance genes to different target plasmids, either by one-ended transposition or by formation of a composite transposon resulting from the insertion of the ISPpy1 second copy at the other side of the antibiotic resistance region. Thus, our data demonstrate that clinically important antibiotic resistance genes originated long before the introduction of antibiotics into clinical practice and confirm an important role of horizontal gene transfer in the distribution of these genes in natural bacterial populations.
Fems Microbiology Letters | 2003
Gennady Kholodii; Sofia Mindlin; Mayya Petrova; Svetlana Minakhina
A Tn21-related mercury resistance transposon, Tn5060, has been isolated from Pseudomonas sp. strain A19-1 from a 8,000-10,000-year-old Siberian permafrost sample, and sequenced. Like Tn21, the element transposes to different plasmids at a frequency of 10(-2)-10(-3) per target plasmid transfer. Comparison of the complete Tn5060 DNA sequence (8,667 bp) with that of Tn21 (19,672 bp) shows that Tn5060 does not contain integron In2 and deviates from Tn21 in four nucleotide positions. These and other comparative data demonstrate that Tn5060 is the most closely related of the characterized mercury resistances to the as yet hypothetical immediate ancestor of Tn21, TnX.
Russian Journal of Genetics | 2008
Mayya Petrova; Zh. M. Gorlenko; V. S. Soina; Sofia Mindlin
Transposons closely related to the streptomycin resistance transposon of modern bacteria, Tn5393, were detected in the bacterial isolates from permafrost resistant to streptomycin. Many transposons studied were located on the medium-size plasmids with a narrow host range. None of the streptomycin-resistant strains isolated from permafrost contained small plasmids carrying the strA-strB genes and related to the broad host range plasmid RSF1010.
Microbiology | 2014
Mayya Petrova; A. V. Kurakov; Natalya Shcherbatova; Sofia Mindlin
A novel multidrug-resistance plasmid, pKLH80, previously isolated from Psychrobacter maritimus MR29-12 found in ancient permafrost, was completely sequenced and analysed. In our previous studies, we focused on the pKLH80 plasmid region containing streptomycin and tetracycline resistance genes, and their mobilization with an upstream-located ISPpy1 insertion sequence (IS) element. Here, we present the complete sequence of pKLH80 and analysis of its backbone genetic structure, including previously unknown features of the plasmids accessory region, notably a novel variant of the β-lactamase gene blaRTG-6. Plasmid pKLH80 was found to be a circular 14 835 bp molecule that has an overall G+C content of 40.3 mol% and encodes 20 putative ORFs. There are two distinctive functional modules within the plasmid backbone sequence: (i) the replication module consisting of repB and the oriV region; and (ii) the mobilization module consisting of mobA, mobC and oriT. All of the aforementioned genes share sequence identities with corresponding genes of different species of Psychrobacter. The plasmid accessory region contains antibiotic resistance genes and IS elements (ISPsma1 of the IS982 family, and ISPpy1 and ISAba14 of the IS3 family) found in environmental and clinical bacterial strains of different taxa. We revealed that the sequences flanking blaRTG-6 and closely related genes from clinical bacteria are nearly identical. This fact suggests that blaRTG-6 from the environmental strain of Psychrobacter is a progenitor of blaRTG genes of clinical bacteria. We also showed that pKLH80 can replicate in different strains of Acinetobacter and Psychrobacter genera. The roles of IS elements in the horizontal transfer of antibiotic resistance genes are examined and discussed.
Organic and Biomolecular Chemistry | 2010
Nikolay P. Arbatsky; Anna N. Kondakova; Alexander S. Shashkov; Marina S. Drutskaya; Pavel V. Belousov; Sergei A. Nedospasov; Mayya Petrova; Yuriy A. Knirel
We established a peculiar structure of the O-specific polysaccharide (O-antigen) of a psychrotrophic strain of Acinetobacter lwoffii, EK30A, isolated from a 1.6-1.8 million-year-old Siberian permafrost subsoil sediment sample. The polysaccharide was released by mild acid degradation of the lipopolysaccharide and studied using chemical analyses, Smith degradation, (1)H and (13)C NMR spectroscopy and mass spectrometry. It was found to contain d-homoserine, which is N-linked to 4-amino-4,6-dideoxy-d-glucose (Qui4N) and is N-acylated itself with acetyl in about half of the repeating units or (S)-3-hydroxybutanoyl group in the other half. The following is the structure of the tetrasaccharide repeating unit of the polysaccharide: -->3)-beta-d-Quip4NAcyl-(1-->6)-alpha-d-Galp-(1-->4)-alpha-d-GalpNAc-(1-->3)-alpha-d-FucpNAc-(1--> where Acyl stands for either N-acetyl- or N-[(S)-3-hydroxybutanoyl]-d-homoseryl.
BioMed Research International | 2016
Sofia Mindlin; Anatolii Petrenko; A. V. Kurakov; Alexey V. Beletsky; Andrey V. Mardanov; Mayya Petrova
We performed whole-genome sequencing of five permafrost strains of Acinetobacter lwoffii (frozen for 15–3000 thousand years) and analyzed their resistance genes found in plasmids and chromosomes. Four strains contained multiple plasmids (8–12), which varied significantly in size (from 4,135 to 287,630 bp) and genetic structure; the fifth strain contained only two plasmids. All large plasmids and some medium-size and small plasmids contained genes encoding resistance to various heavy metals, including mercury, cobalt, zinc, cadmium, copper, chromium, and arsenic compounds. Most resistance genes found in the ancient strains of A. lwoffii had their closely related counterparts in modern clinical A. lwoffii strains that were also located on plasmids. The vast majority of the chromosomal resistance determinants did not possess complete sets of the resistance genes or contained truncated genes. Comparative analysis of various A. lwoffii and of A. baumannii strains discovered a number of differences between them: (i) chromosome sizes in A. baumannii exceeded those in A. lwoffii by about 20%; (ii) on the contrary, the number of plasmids in A. lwoffii and their total size were much higher than those in A. baumannii; (iii) heavy metal resistance genes in the environmental A. lwoffii strains surpassed those in A. baumannii strains in the number and diversity and were predominantly located on plasmids. Possible reasons for these differences are discussed.
Russian Journal of Genetics | 2006
Sofia Mindlin; Mayya Petrova; Irina Bass; Zh. M. Gorlenko
Current views on the mechanisms responsible for the emergence of multiple drug resistance in clinical bacterial isolates are considered. Hypotheses on the origin of resistance genes derived from determinants of actinomycetes, antibiotic-producing strains, and chromosomal genes of bacteria involved in cellular metabolism are reviewed. The mechanisms underlying the diffusion of resistance determinants by means of bacterial mobile elements (plasmids, transposons, and integrons) are discussed. Examples of the horizontal transfer of resistance determinants between Gram-positive and Gram-negative bacteria are presented.
Plasmid | 2016
A. V. Kurakov; Sofia Mindlin; Alexey V. Beletsky; Natalya Shcherbatova; Andrey L. Rakitin; Aleksandra Ermakova; Andrey V. Mardanov; Mayya Petrova
The small mobilizable plasmid pALWED1.8 containing a novel variant of the streptomycin/spectinomycin resistance gene aadA27 was isolated from the permafrost strains of Acinetobacter lwoffii. The 4135bp plasmid carries mobА and mobC genes that mediate its mobilization by conjugative plasmids. The nucleotide sequences of mobА and mobC are similar to those of mobilization genes of the modern plasmid pRAY* and its variants, which contain aadB gene, and are widespread among the pathogenic strains of Acinetobacter baumannii. Almost identical pALWED1.8 variants were detected in modern environmental Аcinetobacter strains. A highly similar plasmid was revealed in a strain of Acinetobacter parvus isolated from mouse intestine. Furthermore, we discovered six previously unidentified variants of plasmids related to pALWED1.8 and pRAY* in public databases. In contrast to most known variants of aadA which are cassette genes associated with integrons, the aadA27 variant harbored by pALWED1.8 is a non-cassette, autonomously transcribed gene. Non-cassette aadA genes with 96% sequence identity to aadA27 were detected in the chromosomes of Acinetobacter gyllenbergii and several uncharacterized strains of Аcinetobacter sp. Moreover, we revealed that the autonomous aadA-like genes are present in the chromosomes of many gram-positive and gram-negative bacteria. The phylogenetic analysis of amino acid sequences of all identified AadA proteins showed the following: (i) cassette aadA genes form a separate monophyletic group and mainly reside on plasmids and (ii) chromosomal non-cassette aadA genes are extremely diverse and can be inherited both vertical and via horizontal gene transfer.
Archives of Virology | 2014
Mayya Petrova; Natalya Shcherbatova; A. V. Kurakov; Sofia Mindlin
Two novel filamentous phages, phiSMA6 and phiSMA7, were isolated from Stenotrophomonas maltophilia environmental strain Khak84. We identified and annotated 11 potential open reading frames in each phage. While the overall layout of the functional gene groups of both phages was similar to that of the known filamentous phages, they differed from them in their molecular structure. The genome of phiSMA6 is a mosaic that evolved by acquiring genes from at least three different filamentous S. maltophilia phages and one Xanthomonas campestris phage related to Cf1. In the phiSMA6 genome, a gene similar to the bacterial gene encoding the mating pair formation protein trbP was also found. We showed that phiSMA6 possesses lysogenic properties and upon induction produces high-titer lysates. The genome of phiSMA7 possesses a unique structure and was found to be closely related to a prophage present in the chromosome of the completely sequenced S. maltophilia clinical strain D457. We suggest that the other three filamentous phages of S. maltophilia described previously also have the capacity to integrate into the genome of their bacterial host.