Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mazen Al-Hajjar is active.

Publication


Featured researches published by Mazen Al-Hajjar.


Journal of Biomedical Materials Research Part B | 2010

Effect of cup inclination angle during microseparation and rim loading on the wear of BIOLOX® delta ceramic‐on‐ceramic total hip replacement

Mazen Al-Hajjar; Ian Leslie; Joanne L. Tipper; Sophie Williams; John Fisher; Louise Jennings

Ceramic-on-ceramic (CoC) bearings in total hip replacements (THRs) have shown low wear volumes under standard gait in hip simulator studies. However, clinical reports have indicated variations in wear rates and formation of stripe-like wear area on the ceramic femoral heads. The aim of this study was to investigate the influence of cup inclination angle and microseparation on the wear of CoC bearings in THRs. The six station Leeds II Physiological Anatomical Joint Simulator was used to investigate the wear of 28 mm diameter alumina matrix composite ceramic bearings (BIOLOX® delta). It was shown that increasing the cup inclination angle from 55° to 65° had no significant effect on the wear rate of BIOLOX® delta CoC under both standard gait and microseparation conditions in this in vitro study. Under standard gait conditions, the mean wear rate for both cup inclination angle conditions was very low at 0.05 mm(3)/million cycles. The introduction of microseparation to the standard gait cycle increased the mean wear rates to 0.13 mm(3)/million cycles for the cup inclination angle of 55° and 0.11 mm(3)/million cycles for that of 65°. The level of increased wear with microseparation was not dependent on cup angle. A stripe of wear on the head also formed, with corresponding superior rim wear on the cup. The wear rates obtained were low compared to the HIPed third generation alumina ceramic (BIOLOX® forte) tested under the same adverse conditions (1.84 mm(3)/million cycles). BIOLOX® delta has shown lower wear than previous ceramic materials used in THR under adverse conditions.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2013

Wear of 36-mm BIOLOX® delta ceramic-on-ceramic bearing in total hip replacements under edge loading conditions

Mazen Al-Hajjar; John Fisher; Joanne L. Tipper; Sophie Williams; Louise Jennings

Ceramic-on-ceramic bearings have become of great interest due to the substantial improvements in the manufacturing techniques and material properties and due to polyethylene wear debris–induced osteolysis and the issues with metal wear debris and ion release by metal-on-metal bearings. Edge loading conditions due to translational malpositioning (microseparation conditions) have been shown to replicate clinically relevant wear mechanisms and increase the wear of ceramic-on-ceramic bearings; thus, it was necessary to test new bearing materials and designs under these adverse conditions. The aim of this study was to assess the effect of increasing head size on the wear of BIOLOX® delta ceramic-on-ceramic bearings under edge loading conditions due to rotational (steep cup inclination angle) and translational (microseparation) malpositioning. In this study, six 36-mm ceramic-on-ceramic bearings (BIOLOX delta, CeramTec, Germany) were tested under standard and edge loading conditions using the Leeds II hip simulator and compared to the 28-mm bearings tested and published previously under identical conditions. The mean wear rate under standard gait conditions was below 0.1 mm3/million cycles for both the 28-mm and the 36-mm ceramic-on-ceramic bearings, and increasing the inclination angle did not affect the wear rates. The introduction of microseparation to the gait cycle increased the wear rate of ceramic-on-ceramic bearing and resulted in stripe wear on the femoral heads. Under microseparation conditions, the wear rate of size 36-mm bearings (0.22 mm3/million cycles) was significantly higher (p = 0.004) than that for size 28-mm bearings (0.13 mm3/million cycles). This was due to the larger contact area for the larger bearings and deprived lubrication under edge loading conditions. The wear rate of BIOLOX delta ceramic-on-ceramic bearings under microseparation conditions was still very low (<0.25 mm3/million cycles) compared to earlier generation ceramic-on-ceramic bearings (BIOLOX forte, 1.84 mm3/million cycles) and other bearing materials such as metal-on-metal bearings (2–8 mm3/million cycles).


Journal of Biomedical Materials Research Part B | 2013

Wear of novel ceramic‐on‐ceramic bearings under adverse and clinically relevant hip simulator conditions

Mazen Al-Hajjar; Louise Jennings; Sabine Begand; Thomas Oberbach; Daniel Delfosse; John Fisher

Further development of ceramic materials for total hip replacement aim to increase fracture toughness and further reduce the incidence of bearing fracture. Edge loading due to translational mal positioning (microseparation) has replicated stripe wear, wear rates, and bimodal wear debris observed on retrievals. This method has replicated the fracture of early zirconia ceramic-on-ceramic bearings. This has shown the necessity of introducing microseparation conditions to the gait cycle when assessing the tribological performance of new hip replacement bearings. Two novel ceramic matrix composite materials, zirconia-toughened alumina (ZTA) and alumina-toughened zirconia (ATZ), were developed by Mathys Orthopädie GmbH. In this study, ATZ-on-ATZ and ZTA-on-ZTA bearing combinations were tested and compared with alumina-on-alumina (Al2O3-on-Al2O3) bearings under adverse microseparation and edge loading conditions using the Leeds II physiological anatomical hip joint simulator. The wear rate (±95% confidence limit) of ZTA-on-ZTA was 0.14 ± 0.10 mm(3)/million cycles and that of ATZ-on-ATZ was 0.06 ± 0.004 mm(3)/million cycles compared with a wear rate of 0.74 ± 1.73 mm(3)/million cycles for Al2O3-on-Al2O3 bearings. Stripe wear was evident on all bearing combinations; however, the stripe formed on the ATZ and ZTA femoral heads was thinner and shallower that that formed on the Al2O3 heads. Posttest phase composition measurements for both ATZ and ZTA materials showed no significant change in the monoclinic zirconia content. ATZ-on-ATZ and ZTA-on-ZTA showed superior wear resistance properties when compared with Al2O3-on-Al2O3 under adverse edge loading conditions.


Journal of Biomedical Materials Research Part B | 2013

Effect of femoral head size on the wear of metal on metal bearings in total hip replacements under adverse edge‐loading conditions

Mazen Al-Hajjar; John Fisher; Sophie Williams; Joanne L. Tipper; Louise Jennings

Abstract Metal-on-metal (MoM) bearings have shown low-wear rates under standard hip simulator conditions; however, retrieval studies have shown large variations in wear rates and mechanisms. High-wear in vivo has caused catastrophic complications and has been associated with steep cup-inclination angle (rotational malpositioning). However, increasing the cup-inclination angle in vitro has not replicated the increases in wear to the same extent as those observed in retrievals. Clinically relevant wear rates, patterns, and particles were observed in vitro for ceramic-on-ceramic bearings when microseparation (translational malpositioning) conditions were introduced into the gait cycle. In the present study, 28 and 36-mm MoM bearings were investigated under adverse conditions. Increasing the cup angle from 45° to 65° resulted in a significant increase in the wear rate of the 28 mm bearings. However, for the 36 mm bearings, head-rim contact did not occur under the steep cup-angle condition, and the wear rate did not increase. The introduction of microseparation to the gait cycle significantly increased the wear rate of the MoM bearings. Cup angle and head size did not influence the wear rate under microseparation conditions. This study indicated that high-in vivo wear rates were associated with edge loading due to rotational malpositioning such as high-cup-inclination angle and translational malpositioning that could occur due to several surgical factors. Translational malpositioning had a more dominant effect on the wear rate. Preclinical simulation testing should be undertaken with translational and rotational malpositioning conditions as well as standard walking cycle conditions defined by the ISO standard.


Journal of Biomedical Materials Research Part B | 2013

Comparison of ceramic‐on‐metal and metal‐on‐metal hip prostheses under adverse conditions

Sophie Williams; Mazen Al-Hajjar; Graham Isaac; John Fisher

Ceramic-on-metal (COM) hip replacements, where the head is BIOLOX® Delta ceramic and the liner is CoCrMo alloy, have demonstrated reduced wear under standard simulator conditions compared to metal-on-metal (MOM) bearings. COM hips are now being used clinically around the world. MOM hip resurfacings have raised concerns regarding poor clinical performance and increased in vivo wear was associated with steeply inclined acetabular components and translationally malpositioned components. The aim of this study was to compare the wear rates of MOM and COM total hip prostheses under adverse edge-loading conditions in a hip simulator test. COM and MOM 36 mm hip prostheses were tested in a hip simulator, with liners mounted to provide a clinical inclination angle of 55°. A simplified gait cycle and microseparation conditions were applied for two million cycles in 25% new born calf serum. The overall mean volumetric wear rate of COM bearings under adverse conditions was 0.36 ± 0.55 mm³/million cycles; this was significantly less than MOM wear (1.32 ± 0.91 mm³/million cycles). Under these adverse conditions; the contact zone on the head intersects the rim of the cup causing substantially elevated contact stresses, disrupting the protective boundary and mixed lubrication regime causing changes in types and severity of wear mechanisms. In COM bearings, the harder head does not become damaged when there is lubricant starvation and wear does not accelerate. In conclusion, COM bearings showed reduced wear compared to MOM bearings under standard and adverse clinically relevant simulator conditions and COM bearings may provide an advantage over MOM bearings under edge-loading conditions clinically.


Orthopaedics and Trauma | 2012

iv) Enhancing the safety and reliability of joint replacement implants

Louise Jennings; Mazen Al-Hajjar; Claire Brockett; Sophie Williams; Joanne L. Tipper; Eileen Ingham; John Fisher

A new Stratified Approach For Enhanced Reliability (SAFER) pre-clinical simulation testing of joint prostheses is presented in this article. The aim of this approach is preclinical systematic testing of wear performance in the much wider envelope of conditions found clinically rather than relying only on the standard testing conditions that are currently used. The approach includes variations in surgical delivery, variations in kinematics, variations in the patient population and degradation of the biomaterial properties. Clinical experience of existing prostheses has been used to validate the new in vitro methods.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2014

Experimental validation of finite element modelling of a modular metal-on-polyethylene total hip replacement

Xijin Hua; Ling Wang; Mazen Al-Hajjar; Zhongmin Jin; Ruth K. Wilcox; John Fisher

Finite element models are becoming increasingly useful tools to conduct parametric analysis, design optimisation and pre-clinical testing for hip joint replacements. However, the verification of the finite element model is critically important. The purposes of this study were to develop a three-dimensional anatomic finite element model for a modular metal-on-polyethylene total hip replacement for predicting its contact mechanics and to conduct experimental validation for a simple finite element model which was simplified from the anatomic finite element model. An anatomic modular metal-on-polyethylene total hip replacement model (anatomic model) was first developed and then simplified with reasonable accuracy to a simple modular total hip replacement model (simplified model) for validation. The contact areas on the articulating surface of three polyethylene liners of modular metal-on-polyethylene total hip replacement bearings with different clearances were measured experimentally in the Leeds ProSim hip joint simulator under a series of loading conditions and different cup inclination angles. The contact areas predicted from the simplified model were then compared with that measured experimentally under the same conditions. The results showed that the simplification made for the anatomic model did not change the predictions of contact mechanics of the modular metal-on-polyethylene total hip replacement substantially (less than 12% for contact stresses and contact areas). Good agreements of contact areas between the finite element predictions from the simplified model and experimental measurements were obtained, with maximum difference of 14% across all conditions considered. This indicated that the simplification and assumptions made in the anatomic model were reasonable and the finite element predictions from the simplified model were valid.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2016

Influence of hip joint simulator design and mechanics on the wear and creep of metal-on-polyethylene bearings

Murat Ali; Mazen Al-Hajjar; Susan Partridge; Sophie Williams; John Fisher; Louise Jennings

Hip joint simulators are used extensively for preclinical testing of hip replacements. The variation in simulator design and test conditions used worldwide can affect the tribological performance of polyethylene. The aim of this study was to assess the effects of simulator mechanics and design on the wear and creep of ultra-high-molecular-weight polyethylene. In the first part of this study, an electromechanical simulator and pneumatic simulator were used to compare the wear and creep of metal-on-polyethylene components under the same standard gait conditions. In the second part of the study, the same electromechanical hip joint simulator was used to investigate the influence of kinematics on wear. Higher wear rates and penetration depths were observed from the electromechanical simulator compared with the pneumatic simulator. When adduction/abduction was introduced to the gait cycle, there was no significant difference in wear with that obtained under the gait cycle condition without adduction/abduction. This study confirmed the influence of hip simulator design and loading conditions on the wear of polyethylene, and therefore direct comparisons of absolute wear rates between different hip joint simulators should be avoided. This study also confirmed that the resulting wear path was the governing factor in obtaining clinically relevant wear rates, and this can be achieved with either two axes or three axes of rotations. However, three axes of rotation (with the inclusion of adduction/abduction) more closely replicate clinical conditions and should therefore be the design approach for newly developed hip joint simulators used for preclinical testing.


Journal of Biomedical Materials Research Part B | 2017

Wear of composite ceramics in mixed‐material combinations in total hip replacement under adverse edge loading conditions

Mazen Al-Hajjar; Silvia Carbone; Louise Jennings; Sabine Begand; Thomas Oberbach; Daniel Delfosse; John Fisher

Abstract Ceramic composites have performed very well under adverse edge loading conditions when used in like‐on‐like configurations, where the femoral head and acetabular cup are of the same material. The aim of this study was to determine the wear of pure alumina (Al2O3), alumina toughened zirconia (ATZ) and zirconia toughened alumina (ZTA) when used in mixed bearing combinations, under edge loading conditions due to translational mal‐positioning. The head‐on‐cup configurations of three ceramic materials were ATZ‐on‐ZTA, ZTA‐on‐ATZ, Al2O3‐on‐ATZ, ATZ‐on‐Al2O3, Al2O3‐on‐ZTA, and ZTA‐on‐Al2O3. They were tested on the Leeds II hip simulator under microseparation conditions. The bedding in and steady state wear rates of ATZ‐on‐ZTA were 1.16mm3/million cycles and 0.18mm3/million, respectively, and for ATZ‐on‐Al2O3 were 0.66 mm3/million cycles and 0.20 mm3/million, respectively. The wear rates of the other bearing combinations under these adverse microseparation conditions, Al2O3‐on‐ATZ, Al2O3‐on‐ZTA, ZTA‐on‐ATZ and ZTA‐on‐Al2O3 were very low with no clear bedding in and steady state phases, and with steady state wear rates lower than 0.11 mm3/million. The mixed material combinations tested in this study have shown slightly higher wear rates when compared to ATZ in like‐on‐like configuration reported previously, but superior wear resistance when compared to alumina‐on‐alumina bearings tested previously under the same adverse microseparation conditions.


Archive | 2010

The Influence of Cup Inclination Angle and Head Position on the Wear of Metalon-Metal Bearings in Total Hip Replacements

Mazen Al-Hajjar; Sophie Williams; John Fisher; Louise Jennings

Thermal treatments for tissue ablation rely upon the heating of cells past a threshold beyond which the cells are considered destroyed, denatured or killed. In this paper a theoretical, infinite state, lesion based model as proposed by Jung is modified to include a lesion healing process. An empirically based novel three-state model for cell death is proposed; and both models are fitted to experimental data of five different co-cultures of hepatocytes and lung fibroblasts with low RMS error. The models are compared and contrasted with regard to physiological relevance and ease of computational implementation. The suitability of substituting the infinite state model with a three state model is discussed and assessed with respect to multi-scale modeling.

Collaboration


Dive into the Mazen Al-Hajjar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Darshil Kapadia

University of Huddersfield

View shared research outputs
Top Co-Authors

Avatar

Paul J. Bills

University of Huddersfield

View shared research outputs
Top Co-Authors

Avatar

Radu Racasan

Royal National Orthopaedic Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge