Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mazher Mohammed is active.

Publication


Featured researches published by Mazher Mohammed.


Physiology & Behavior | 2012

Heating and eating: brown adipose tissue thermogenesis precedes food ingestion as part of the ultradian basic rest-activity cycle in rats.

W.W. Blessing; Mazher Mohammed; Youichirou Ootsuka

Laboratory rats, throughout the 24 hour day, alternate between behaviorally active and non active episodes that Kleitman called the basic rest-activity cycle (BRAC). We previously demonstrated that brown adipose tissue (BAT), body and brain temperatures and arterial pressure and heart rate increase in an integrated manner during behaviorally active phases. Studies show that eating is preceded by increases in body and brain temperature, but whether eating is integrated into the BRAC has not been investigated. In the present study of chronically instrumented, unrestrained Sprague-Dawley rats, peaks in BAT temperature occurred every 96 ± 7 and 162 ± 16 min (mean ± SE, n=14 rats) in dark and light periods respectively, with no apparent underlying regularity. With food available ad libitum, eating was integrated into the BRAC in a temporally precise manner. Eating occurred only after an increase in BAT temperature, commencing 15 ± 1 min (mean ± SE) after the onset of an increase, with no difference between dark and light phases. There were either no or weak preprandial and postprandial relations between intermeal interval and amount eaten during a given meal. Remarkably, with no food available the rat still disturbed the empty food container 16 ± 1 min (p>0.05 versus ad libitum food) after the onset of increases in BAT temperature, and not at other times. Rather than being triggered by changes in levels of body fuels or other meal-associated factors, in sedentary laboratory rats with ad libitum access to food eating commences as part of the ultradian BRAC, a manifestation of intrinsic brain activity.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2014

Brown adipose tissue thermogenesis contributes to emotional hyperthermia in a resident rat suddenly confronted with an intruder rat

Mazher Mohammed; Youichirou Ootsuka; W.W. Blessing

Body temperature increases when individuals experience salient, emotionally significant events. There is controversy concerning the contribution of nonshivering thermogenesis in brown adipose tissue (BAT) to emotional hyperthermia. In the present study we compared BAT, core body, and brain temperature, and tail blood flow, simultaneously measured, to determine whether BAT thermogenesis contributes to emotional hyperthermia in a resident Sprague-Dawley rat when an intruder rat, either freely-moving or confined to a small cage, is suddenly introduced into the cage of the resident rat for 30 min. Introduction of the intruder rat promptly increased BAT, body, and brain temperatures in the resident rat. For the caged intruder these temperature increases were 1.4 ± 0.2, 0.8 ± 0.1, 1.0 ± 0.1°C, respectively, with the increase in BAT temperature being significantly greater (P < 0.01) than the increases in body and brain. The initial 5-min slope of the BAT temperature record (0.18 ± 0.02°C/min) was significantly greater (P < 0.01) than the corresponding value for body (0.10 ± 0.01°C/min) and brain (0.09 ± 0.02°C/min). Tail artery pulse amplitude fell acutely when the intruder rat was introduced, possibly contributing to the increases in body and brain temperature. Prior blockade of β3 adrenoceptors (SR59230A 10 mg/kg ip) significantly reduced the amplitude of each temperature increase. Intruder-evoked increases in BAT temperature were similar in resident rats maintained at 11°C for 3 days. In the caged intruder situation there is no bodily contact between the rats, so the stimulus is psychological rather than physical. Our study thus demonstrates that BAT thermogenesis contributes to increases in body and brain temperature occurring during emotional hyperthermia.


Physiology & Behavior | 2013

Brown adipose tissue thermogenesis, the basic rest-activity cycle, meal initiation, and bodily homeostasis in rats

W.W. Blessing; Mazher Mohammed; Youichirou Ootsuka

Laboratory rats alternate between behaviorally active and inactive states every 1-2h throughout the 24hour day, the ultradian basic rest-activity cycle (BRAC). During the behaviorally active phases of the BRAC, brown adipose tissue (BAT) temperature, body and brain temperature, and arterial pressure and heart rate increase in an integrated manner. Since the BAT temperature increases are substantially greater than the corresponding body and brain temperature increases, BAT thermogenesis contributes to the body and brain temperature increases. When food is available ad libitum, eating commences approximately 15min after the onset of an episodic increase in BAT temperature, and not at other times. If no food is available, the rat still disturbs the empty food container approximately 15min after the onset of an episodic increase in BAT temperature, and not at other times. The increase in brain temperature that precedes eating may facilitate the cognitive processing that occurs during the search for food, when the rat engages with the external environment. Rather than being triggered by changes in levels of body fuels or other meal-associated factors, in sedentary laboratory rats with ad libitum access to food, meal initiation normally occurs as part of the centrally-programmed ultradian BRAC. BRAC-associated BAT temperature increases occur in a thermoneutral environment and they are not preceded by falls in body or brain temperature, so they are not homeostatic thermoregulatory responses. The pattern of integrated behaviors and physiological functions associated with the BRAC presumably reflects Darwinian natural selection, and homeostatic thermoregulatory explanations of the BRAC-associated changes in temperature should be considered in this context.


Neuroscience | 2013

Inactivation of neuronal function in the amygdaloid region reduces tail artery blood flow alerting responses in conscious rats

Mazher Mohammed; Keerthi Kulasekara; R.C. de Menezes; Youichirou Ootsuka; W.W. Blessing

Few studies have investigated whether neuronal function in the amygdaloid complex is necessary for the occurrence of the cardiovascular response to natural (unconditioned) environmental threats. In the present investigation in conscious unrestrained Sprague-Dawley rats we inactivated neuronal function in the amygdaloid complex acutely (bilateral muscimol injections) or chronically (unilateral or bilateral ibotenic acid injections) and measured the effect on sudden falls in tail artery blood flow elicited by non-noxious salient stimuli (sympathetic cutaneous vasomotor alerting responses, SCVARs). After acute bilateral injection of vehicle (200nl Ringers solution) the SCVAR index was 81 ± 2%, indicating that tail blood flow was reduced by 81% in response to the salient stimuli. After acute bilateral injection of muscimol (1 nmol in 200 nl of Ringers solution) into the amygdaloid complex the SCVAR index was 49 ± 5%, indicating that tail blood flow was reduced by 49% in response to the salient stimuli (p<0.01 versus vehicle, n=7 rats for vehicle and 6 for muscimol). One week after unilateral ibotenic acid lesions, the SCVAR index was 68 ± 3%, significantly less than 90 ± 1%, the corresponding value after unilateral injection of vehicle (p<0.01, n=6 rats in each group). After bilateral ibotenic acid lesions the SCVAR index was 52 ± 4%, significantly less than 93 ± 1%, the corresponding value after bilateral injection of vehicle (p<0.001, n=6 rats in each group). Ibotenic acid caused extensive neuronal destruction of the whole amygdaloid complex, as well as lateral temporal lobe structures including the piriform cortex. Our results demonstrate that the amygdaloid complex plays an important role in mediating the tail artery vasoconstriction that occurs in rats in response to the animals perception of a salient stimulus, redirecting blood to areas of the body with more immediate metabolic requirements.


Physiological Reports | 2015

Activation of the habenula complex evokes autonomic physiological responses similar to those associated with emotional stress

Youichirou Ootsuka; Mazher Mohammed

Neurons in the lateral habenula (LHb) discharge when an animal anticipates an aversive outcome or when an expected reward is not forthcoming, contributing to the behavioral response to aversive situations. So far, there is little information as to whether the LHb also contributes to autonomic physiological responses, including increases in body temperature (emotional hyperthermia) that are integrated with defensive behaviors. Vasoconstriction in cutaneous vascular bed and heat production in brown adipose tissue (BAT) both contribute to emotional hyperthermia. Our present study determines whether stimulation of the LHb elicits constriction of the tail artery and BAT thermogenesis in anesthetized Sprague–Dawley rats. Disinhibition of neurons in LHb with focal microinjections of bicuculline (1 nmol in 100 nl, bilaterally) acutely increased BAT temperature (+0.6 ± 0.1°C, n = 9 rats, P < 0.01) and reduced tail artery blood flow (by 88 ± 4%, n = 9 rats, P < 0.01). Falls in mesenteric blood flow, simultaneously recorded, were much less intense. The pattern of BAT thermogenesis and cutaneous vasoconstriction elicited by stimulating the habenula is similar to the pattern observed during stress‐induced emotional hyperthermia, suggesting that the habenula may be important in this response.


Temperature | 2016

Attenuated cold defense responses in orexin neuron-ablated rats

Mazher Mohammed; Masashi Yanagisawa; W.W. Blessing; Youichirou Ootsuka

ABSTRACT Recent reports of the use of transgenic mice targeting orexin neurons show that the ablation of orexin neurons in the hypothalamus causes hypothermia during cold exposure. This suggests the importance of orexin neurons for cold-induced autonomic and physiological defense responses, including brown adipose tissue (BAT) thermogenesis and vasoconstriction in thermoregulatory cutaneous vascular bed. The present study investigated whether the ablation of orexin neurons attenuated cold-elicited BAT thermogenesis and cutaneous vasoconstriction. The study took advantage of our established conscious rat experimental model of direct measurement of BAT and body temperature and tail cutaneous blood flow. The study used transgenic orexin neurons-ablated (ORX-AB) rats and wild type (WT) rats. BAT temperature and tail artery blood flow with pre-implanted probes were measured, as well as behavioral locomotor activity under conscious free-moving condition. Gradually, the ambient temperature was decreased to below 5°C. ORX-AB rats showed an attenuated cold-induced BAT thermogenesis and behavioral activity, and delayed tail vasoconstriction. An ambient temperature that initiated BAT thermogenesis and established full cutaneous vasoconstriction was 14.1 ± 1.9 °C, which was significantly lower than 20.5 ± 1.9 °C, the corresponding value in WT rats (n = 10, P < 0.01). The results from this study suggest that the integrity of orexin-synthesising neurons in thermoregulatory networks is important for full expression of the cold defense responses.


Scientific Reports | 2017

Lateral habenula regulation of emotional hyperthermia: mediation via the medullary raphé

Youichirou Ootsuka; Mazher Mohammed; W.W. Blessing

The lateral habenula (LHb) has an important role in the behavioural response to salient, usually aversive, events. We previously demonstrated that activation of neurons in the LHb increases brown adipose tissue (BAT) thermogenesis and constricts the cutaneous vascular bed, indicating that the LHb contributes to the central control of sympathetic outflow to thermoregulatory effector organs. We have now investigated whether the LHb mediates BAT thermogenesis elicited by emotional stress, and whether the LHb modulates thermoregulatory sympathetic outflow via the rostral medullary raphé, a key integrative lower brainstem sympathetic control centre. In conscious animals, lesioning the LHb attenuated emotional BAT thermogenesis, suggesting that the LHb is part of the central circuitry mediating emotional hyperthermia. In anesthetized animals, inhibition of neurons in the rostral medullary raphé reversed BAT thermogenesis and cutaneous vasoconstriction elicited by activation of neurons in the LHb, indicating that the LHb-induced autonomic responses are mediated through activation of the rostral medullary raphé neurons. The latency to activate BAT sympathetic discharge from electrical stimulation of the LHb was substantially greater than the corresponding latency after stimulation of the medullary raphé, suggesting that the neuronal pathway connecting those two nuclei is quite indirect.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2016

Locus coeruleus noradrenergic innervation of the amygdala facilitates alerting-induced constriction of the rat tail artery

Mazher Mohammed; Keerthi Kulasekara; Youichirou Ootsuka; W.W. Blessing

The amygdala, innervated by the noradrenergic locus coeruleus, processes salient environmental events. α2-adrenoceptor-stimulating drugs (clonidine-like agents) suppress the behavioral and physiological components of the response to salient events. Activation of sympathetic outflow to the cutaneous vascular bed is part of the physiological response to salience-mediated activation of the amygdala. We have determined whether acute systemic and intra-amygdala administration of clonidine, and chronic immunotoxin-mediated destruction of the noradrenergic innervation of the amygdala, impairs salience-related vasoconstrictor episodes in the tail artery of conscious freely moving Sprague-Dawley rats. After acute intraperitoneal injection of clonidine (10, 50, and 100 μg/kg), there was a dose-related decrease in the reduction in tail blood flow elicited by alerting stimuli, an effect prevented by prior administration of the α2-adrenergic blocking drug idazoxan (1 mg/kg ip or 75 nmol bilateral intra-amygdala). A dose-related decrease in alerting-induced tail artery vasoconstriction was also observed after bilateral intra-amygdala injection of clonidine (5, 10, and 20 nmol in 200 nl), an effect substantially prevented by prior bilateral intra-amygdala injection of idazoxan. Intra-amygdala injection of idazoxan by itself did not alter tail artery vasoconstriction elicited by alerting stimuli. Intra-amygdala injection of saporin coupled to antibodies to dopamine-β-hydroxylase (immunotoxin) destroyed the noradrenergic innervation of the amygdala and the parent noradrenergic neurons in the locus coeruleus. The reduction in tail blood flow elicited by standardized alerting stimuli was substantially reduced in immunotoxin-treated rats. Thus, inhibiting the release of noradrenaline within the amygdala reduces activation of the sympathetic outflow to the vascular beds elicited by salient events.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2014

Reduced brown adipose tissue thermogenesis during environmental interactions in transgenic rats with ataxin-3-mediated ablation of hypothalamic orexin neurons.

Mazher Mohammed; Youichirou Ootsuka; Masashi Yanagisawa; W.W. Blessing


Psychopharmacology | 2017

Clozapine, chlorpromazine and risperidone dose-dependently reduce emotional hyperthermia, a biological marker of salience

W.W. Blessing; Esther M. Blessing; Mazher Mohammed; Youichirou Ootsuka

Collaboration


Dive into the Mazher Mohammed's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge