Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Youichirou Ootsuka is active.

Publication


Featured researches published by Youichirou Ootsuka.


Neuroscience Letters | 2004

Inhibition of rostral medullary raphé neurons prevents cold-induced activity in sympathetic nerves to rat tail and rabbit ear arteries.

Youichirou Ootsuka; W.W. Blessing; Robin M. McAllen

Sympathetically-mediated vasoconstriction of cutaneous vessels is critical for thermoregulation in the cold. We determined whether cold-induced sympathetic discharge depends on activity of neurons in the rostral medullary raphé. In urethane-anesthetized rats and rabbits, cooling the trunk skin by a water jacket reproducibly increased cutaneous sympathetic discharge recorded in the tail (rats) and the ear pinna (rabbits). When neurons in the rostral medullary raphé were inhibited by microinjection of glycine (30-100 nmol in 60-200 nl in rats), or muscimol (1 nmol in 100 nl in rabbits), cutaneous sympathetic activity was silenced and no longer responded to cooling (7+/-3 and 5+/-2% of pre-injection increase in rats and rabbits, respectively, P < 0.01). Our data demonstrate that activity of rostral medullary raphé neurons is important for the CNS mediation of cold-induced increases in sympathetic cutaneous vasomotor nerves.


The Journal of Physiology | 2002

Thermoregulatory control of sympathetic fibres supplying the rat's tail

Neil C. Owens; Youichirou Ootsuka; Kazuyuki Kanosue; Robin M. McAllen

We investigated the thermoregulatory responses of sympathetic fibres supplying the tail in urethane‐anaesthetised rats. When skin and rectal temperatures were kept above 39 °C, tail sympathetic fibre activity was low or absent. When the trunk skin was cooled episodically by 2–7 °C by a water jacket, tail sympathetic activity increased in a graded fashion below a threshold skin temperature of 37.8 ± 0.6 °C, whether or not core (rectal) temperature changed. Repeated cooling episodes lowered body core temperature by 1.3–3.1 °C, and this independently activated tail sympathetic fibre activity, in a graded fashion, below a threshold rectal temperature of 38.4 ± 0.2 °C. Tail blood flow showed corresponding graded vasoconstrictor responses to skin and core cooling, albeit over a limited range. Tail sympathetic activity was more sensitive to core than to trunk skin cooling by a factor that varied widely (24‐fold) between animals. Combined skin and core cooling gave additive or facilitatory responses near threshold but occlusive interactions with stronger stimuli. Unilateral warming of the preoptic area reversibly inhibited tail sympathetic activity. This was true for activity generated by either skin or core cooling. Single tail sympathetic units behaved homogeneously. Their sensitivity to trunk skin cooling was 0.3 ± 0.08 spikes s−1°C−1 and to core cooling was 2.2 ± 0.5 spikes s−1°C−1. Their maximum sustained firing rate in the cold was 1.82 ± 0.35 spikes s−1.


Neuroscience | 2009

Brown adipose tissue thermogenesis heats brain and body as part of the brain-coordinated ultradian basic rest-activity cycle

Youichirou Ootsuka; R.C. de Menezes; Dmitry V. Zaretsky; A. Alimoradian; J. Hunt; Aneta Stefanidis; Brian J. Oldfield; W.W. Blessing

Brown adipose tissue (BAT), body and brain temperatures, as well as behavioral activity, arterial pressure and heart rate, increase episodically during the waking (dark) phase of the circadian cycle in rats. Phase-linking of combinations of these ultradian (<24 h) events has previously been noted, but no synthesis of their overall interrelationships has emerged. We hypothesized that they are coordinated by brain central command, and that BAT thermogenesis, itself controlled by the brain, contributes to increases in brain and body temperature. We used chronically implanted instruments to measure combinations of bat, brain and body temperatures, behavioral activity, tail artery blood flow, and arterial pressure and heart rate, in conscious freely moving Sprague-Dawley rats during the 12-h dark active period. Ambient temperature was kept constant for any particular 24-h day, varying between 22 and 27 degrees C on different days. Increases in BAT temperature (> or = 0.5 degrees C) occurred in an irregular episodic manner every 94+/-43 min (mean+/-SD). Varying the temperature over a wider range (18-30 degrees C) on different days did not change the periodicity, and neither body nor brain temperature fell before BAT temperature episodic increases. These increases are thus unlikely to reflect thermoregulatory homeostasis. Episodic BAT thermogenesis still occurred in food-deprived rats. Behavioral activity, arterial pressure (18+/-5 mmHg every 98+/-49 min) and heart rate (86+/-31 beats/min) increased approximately 3 min before each increase in BAT temperature. Increases in BAT temperature (1.1+/-0.4 degrees C) were larger than corresponding increases in brain (0.8+/-0.4 degrees C) and body (0.6+/-0.3 degrees C) temperature and the BAT episodes commenced 2-3 min before body and brain episodes, suggesting that BAT thermogenesis warms body and brain. Hippocampal 5-8 Hz theta rhythm, indicating active engagement with the environment, increased before the behavioral and autonomic events, suggesting coordination by brain central command as part of the 1-2 h ultradian basic rest-activity cycle (BRAC) proposed by Kleitman.


Neuroscience Letters | 2000

Leptin injection into white adipose tissue elevates renal sympathetic nerve activity dose-dependently through the afferent nerves pathway in rats

Mamoru Tanida; Soh Iwashita; Youichirou Ootsuka; Naohito Terui; Masashige Suzuki

Recent studies suggested that leptin in white adipose tissue (WAT) affected the sympathetic out flow to several tissues. We examined whether elevations of renal sympathetic nerve activity (RSNA) and blood pressure (BP) could be observed by leptin injection into WAT in rats. Injections of leptin (10 and 100 ng/ml per kg) into WAT evoked the activation of RSNA dose-dependently. Circulating sympathetic nerve activators, such as leptin, insulin, glucose and lactate, were unchanged by any doses of leptin. In addition, BP was not affected by leptin injections during a 90 min experimental period. These data suggested that leptin activated the afferent nerves through the sensors in WAT, resulting in elevation of RSNA.


The Journal of Physiology | 2003

5-Hydroxytryptamine 1A receptors inhibit cold-induced sympathetically mediated cutaneous vasoconstriction in rabbits.

Youichirou Ootsuka; W.W. Blessing

5‐HT1A receptor agonists lower body temperature. We have investigated whether activation of 5‐HT1A receptors inhibits cutaneous sympathetic discharge so that dilatation of the cutaneous vascular bed lowers body temperature by increasing heat transfer to the environment. We measured ear pinna blood flow in conscious rabbits (with chronically implanted Doppler ultrasound flow probes), and postganglionic sympathetic vasomotor nerve activity in anaesthetized rabbits. Recordings from conscious rabbits were made in a cage at 26 °C and the rabbit was then transferred to a cage at 10 °C. The ear pinna Doppler signal fell from 56 ± 4 cm s−1 in the 26 °C cage to 4 ± 1 cm s−1 (P < 0.0001, n= 24) after 30 min in the 10 °C cage, and body temperature increased from 38.8 ± 0.2 to 39.0 ± 0.2 °C (P < 0.01, n= 24). The 5‐HT1A agonist 8‐hydroxy‐2‐(di‐n‐propylamino)tetralin (8‐OH‐DPAT; 0.1 mg kg−1 I.V.) reversed the cold‐induced fall in ear pinna blood flow (Doppler signal increased from 5 ± 1 to 55 ± 8 cm s−1, P < 0.001, n= 7) within 5 min when administered 30 min after transfer to the 10 °C cage, and prevented the fall in ear pinna blood flow when administered before the rabbit was transferred to the 10 °C cage. Body temperature decreased after administration of 8‐OH‐DPAT. These changes were abolished by the specific 5‐HT1A antagonist WAY‐100635 (0.1 mg kg−1 I.V.). In anaesthetized rabbits, 8‐OH‐DPAT (0.1 mg kg−1 I.V.) reduced resting postganglionic cutaneous sympathetic vasomotor discharge, and prevented the increase normally elicited by cooling the trunk. Our experiments constitute the first demonstration that activation of 5‐HT1A receptors powerfully inhibits cold‐induced increases in cutaneous sympathetic vasomotor discharge, thereby dilating the cutaneous vascular bed and increasing transfer of heat to the environment.


Journal of The Autonomic Nervous System | 1992

Neurons in the caudal ventrolateral medulla mediate the somato-sympathetic inhibitory reflex response via GABA receptors in the rostral ventrolateral medulla

Noboru Masuda; Youichirou Ootsuka; Naohito Terui

In urethane-anesthetized rabbits, stimulation of the sural nerve, consisting of cutaneous afferents (A-fibers), evoked reflex responses consisting of an early small excitatory component followed by a prolonged inhibitory component in renal sympathetic nerve activity. Bilateral injections of GABA antagonist, bicuculline (4 nmol/site), into the rostral ventrolateral medulla (RVLM), where sympatho-excitatory reticulospinal neurons are located, attenuated the inhibitory component in a dose-dependent manner as well as the inhibition evoked by stimulation of the aortic nerve A-fibers (baroreceptor afferents). Bilateral injections of a neurotoxic agent, kainic acid (4 nmol/site, 3 sites/side), into the caudal ventrolateral medulla (CVLM), where sympatho-inhibitory neurons with axonal projection to the RVLM are located, diminished these sympatho-inhibitory responses. Therefore it is concluded that the sympatho-inhibition evoked by activation of somatic afferents was mediated by neurons in the CVLM and by GABA receptors in the RVLM, as was the sympatho-inhibition associated with the arterial baroreceptor reflex. Bilateral injections of kynurenic acid (4 nmol/site, 3 sites/side) into the CVLM did not affect the somato-sympathetic reflex response, but diminished the sympatho-inhibition produced by activation of the baroreceptor afferents. Sympatho-inhibitory neurons in the CVLM were activated by glutamate when baroreceptor afferents were activated, but another excitatory transmitter may participate in the somato-sympathetic reflex in the CVLM.


Physiology & Behavior | 2012

Heating and eating: brown adipose tissue thermogenesis precedes food ingestion as part of the ultradian basic rest-activity cycle in rats.

W.W. Blessing; Mazher Mohammed; Youichirou Ootsuka

Laboratory rats, throughout the 24 hour day, alternate between behaviorally active and non active episodes that Kleitman called the basic rest-activity cycle (BRAC). We previously demonstrated that brown adipose tissue (BAT), body and brain temperatures and arterial pressure and heart rate increase in an integrated manner during behaviorally active phases. Studies show that eating is preceded by increases in body and brain temperature, but whether eating is integrated into the BRAC has not been investigated. In the present study of chronically instrumented, unrestrained Sprague-Dawley rats, peaks in BAT temperature occurred every 96 ± 7 and 162 ± 16 min (mean ± SE, n=14 rats) in dark and light periods respectively, with no apparent underlying regularity. With food available ad libitum, eating was integrated into the BRAC in a temporally precise manner. Eating occurred only after an increase in BAT temperature, commencing 15 ± 1 min (mean ± SE) after the onset of an increase, with no difference between dark and light phases. There were either no or weak preprandial and postprandial relations between intermeal interval and amount eaten during a given meal. Remarkably, with no food available the rat still disturbed the empty food container 16 ± 1 min (p>0.05 versus ad libitum food) after the onset of increases in BAT temperature, and not at other times. Rather than being triggered by changes in levels of body fuels or other meal-associated factors, in sedentary laboratory rats with ad libitum access to food eating commences as part of the ultradian BRAC, a manifestation of intrinsic brain activity.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2008

Fever response to intravenous prostaglandin E2 is mediated by the brain but does not require afferent vagal signaling

Youichirou Ootsuka; W.W. Blessing; Alexandre A. Steiner; Andrej A. Romanovsky

PGE2 produced in the periphery triggers the early phase of the febrile response to infection and may contribute to later phases. It can be hypothesized that peripherally synthesized PGE2 transmits febrigenic signals to the brain via vagal afferent nerves. Before testing this hypothesis, we investigated whether the febrigenic effect of intravenously administered PGE2 is mediated by the brain and is not the result of a direct action of PGE2 on thermoeffectors. In anesthetized rats, intravenously injected PGE2 (100 microg/kg) caused an increase in sympathetic discharge to interscapular brown adipose tissue (iBAT), as well as increases in iBAT thermogenesis, end-expired CO2, and colonic temperature (Tc). All these effects were prevented by inhibition of neuronal function in the raphe region of the medulla oblongata using an intra-raphe microinjection of muscimol. We then asked whether the brain-mediated PGE2 fever requires vagal signaling and answered this question by conducting two independent studies in rats. In a study in anesthetized rats, acute bilateral cervical vagotomy did not affect the effects of intravenously injected PGE2 (100 microg/kg) on iBAT sympathetic discharge and Tc. In a study in conscious rats, administration of PGE2 (280 microg/kg) via an indwelling jugular catheter caused tail skin vasoconstriction, tended to increase oxygen consumption, and increased Tc; none of these responses was affected by total truncal subdiaphragmatic vagotomy performed 2 wk before the experiment. We conclude that the febrile response to circulating PGE2 is mediated by the brain, but that it does not require vagal afferent signaling.


Life Sciences | 2002

Direct measurement of renal sympathetic nervous activity in high-fat diet-related hypertensive rats.

Soh Iwashita; Mamoru Tanida; Naohito Terui; Youichirou Ootsuka; Miao Shu; Doochan Kang; Masashige Suzuki

The elevation of renal sympathetic nervous activity (SNA) is a possible cause of blood pressure (BP) elevation. Although a high-fat diet (FAT) often induces BP elevation in animals, the effect of FAT on renal SNA in animals is not consistent between studies. Thus, we compared the basal levels of efferent renal SNA and BP in FAT- or high-carbohydrate diet (CHO)-fed rats. Twenty-four male Sprague-Dawley rats were fed FAT (P/F/C=20/45/35% cal) or CHO (20/5/75) from 5 weeks of age. After 20-21 weeks of feeding, a 24-h urine sample was collected to measure sodium excretion. The next day, blood (0.2 ml) was withdrawn from a femoral artery, and basal efferent renal nerve discharges and mean arterial pressure (MAP) were recorded under anesthesia. Immediately after the experiment, abdominal (epididymal, perirenal and mesenteric) adipose tissues were dissected. Total abdominal fat weight was significantly greater in the FAT group than in the CHO group. The plasma level of leptin was significantly higher in the FAT group, but blood glucose and plasma insulin levels did not differ between the two groups. MAP and renal SNA were significantly higher in the FAT group. In addition, the ratio of urinary sodium excretion to dietary sodium intake was significantly lower in the FAT group than in the CHO group. The data suggest that the increased renal SNA may contribute to BP elevation in FAT-fed rats. The present study firstly demonstrated that renal SNA was elevated with FAT-related BP elevation.


Neuroscience Letters | 2006

Thermogenesis in brown adipose tissue : Increase by 5-HT2A receptor activation and decrease by 5-HT1A receptor activation in conscious rats

Youichirou Ootsuka; W.W. Blessing

Body temperature is decreased by 5-hydroxytryptamine 1A (5-HT1A) agonists and increased by 5-HT2A agonists. The present study determined whether changes in interscapular brown adipose tissue (iBAT) thermogenesis contribute to these effects in conscious unrestrained animals. Male Sprague-Dawley rats were pre-instrumented for measurement of iBAT and core temperature and tail artery blood flow one week before experiments. In the first series of experiments, rats were transferred from warm (25-28 degrees C) to cold (5-10 degrees C) environments. This increased iBAT temperature (+1.3 +/- 0.2 degrees C, P<0.01, n = 7) and reduced tail artery flow. Injection of the 5-HT1A agonist, 8-OH-DPAT (8-hydroxy-2-(di-n-propylamino)tetralin, 0.5 mg/kg, s.c.) reversed the increase in iBAT thermogenesis (-1.5 +/- 0.4 degrees C, P<0.01, n = 6), and decreased core temperature (-1.5 +/- 0.4 degrees C, P<0.01, n = 6). Pre-treatment with WAY-100635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-(2-pyridinyl)cyclohexanecarboxamide trihydrochloride), a 5-HT1A antagonist, prevented effects of 8-OH-DPAT. In the second series of experiments, injection of a 5-HT2A agonist, DOI (R(-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride, 0.1 mg/kg, s.c.) increased both iBAT (+1.9 +/- 0.1 degrees C, P<0.01, n = 7) and core temperatures (+1.4+/-0.2 degrees C, P<0.01, n=7), and decreased tail artery blood flow. Subsequent injection of SR 46349B (trans-4-((3Z)3-[(2-dimethylaminoethyl)oxyimino]-3-(2-fluorophenyl) propen-1-yl)-phenol, hemifumarate, 0.5 mg/kg, s.c.), a 5-HT2A antagonist, reduced all these changes. Results indicate that activation of 5-HT1A receptors reduces sympathetic outflow to BAT and that activation of 5-HT2A receptors increases this outflow. Changes in core temperature mediated by brain/spinal pathways regulated by 5-HT1A and 5-HT2A receptors reflect coordinated changes in BAT-mediated heat production as well as changes in heat dissipation via the thermoregulatory cutaneous vascular beds.

Collaboration


Dive into the Youichirou Ootsuka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge