Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Megan E. Holtz is active.

Publication


Featured researches published by Megan E. Holtz.


Nano Letters | 2014

Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte.

Megan E. Holtz; Yingchao Yu; Deniz Gunceler; Jie Gao; Ravishankar Sundararaman; Kathleen A. Schwarz; T. A. Arias; Héctor D. Abruña; David A. Muller

A major challenge in the development of new battery materials is understanding their fundamental mechanisms of operation and degradation. Their microscopically inhomogeneous nature calls for characterization tools that provide operando and localized information from individual grains and particles. Here, we describe an approach that enables imaging the nanoscale distribution of ions during electrochemical charging of a battery in a transmission electron microscope liquid flow cell. We use valence energy-loss spectroscopy to track both solvated and intercalated ions, with electronic structure fingerprints of the solvated ions identified using an ab initio nonlinear response theory. Equipped with the new electrochemical cell holder, nanoscale spectroscopy and theory, we have been able to determine the lithiation state of a LiFePO4 electrode and surrounding aqueous electrolyte in real time with nanoscale resolution during electrochemical charge and discharge. We follow lithium transfer between electrode and electrolyte and image charging dynamics in the cathode. We observe competing delithiation mechanisms such as core-shell and anisotropic growth occurring in parallel for different particles under the same conditions. This technique represents a general approach for the operando nanoscale imaging of electrochemically active ions in the electrode and electrolyte in a wide range of electrical energy storage systems.


Nature | 2016

Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic

Julia A. Mundy; Charles M. Brooks; Megan E. Holtz; Jarrett A. Moyer; Hena Das; Alejandro F. Rebola; John Heron; James D. Clarkson; Steven M. Disseler; Zhiqi Liu; Alan Farhan; Rainer Held; Robert Hovden; Elliot Padgett; Qingyun Mao; Hanjong Paik; Rajiv Misra; Lena F. Kourkoutis; Elke Arenholz; Andreas Scholl; J. A. Borchers; William Ratcliff; R. Ramesh; Craig J. Fennie; P. Schiffer; David A. Muller; Darrell G. Schlom

Materials that exhibit simultaneous order in their electric and magnetic ground states hold promise for use in next-generation memory devices in which electric fields control magnetism. Such materials are exceedingly rare, however, owing to competing requirements for displacive ferroelectricity and magnetism. Despite the recent identification of several new multiferroic materials and magnetoelectric coupling mechanisms, known single-phase multiferroics remain limited by antiferromagnetic or weak ferromagnetic alignments, by a lack of coupling between the order parameters, or by having properties that emerge only well below room temperature, precluding device applications. Here we present a methodology for constructing single-phase multiferroic materials in which ferroelectricity and strong magnetic ordering are coupled near room temperature. Starting with hexagonal LuFeO3—the geometric ferroelectric with the greatest known planar rumpling—we introduce individual monolayers of FeO during growth to construct formula-unit-thick syntactic layers of ferrimagnetic LuFe2O4 (refs 17, 18) within the LuFeO3 matrix, that is, (LuFeO3)m/(LuFe2O4)1 superlattices. The severe rumpling imposed by the neighbouring LuFeO3 drives the ferrimagnetic LuFe2O4 into a simultaneously ferroelectric state, while also reducing the LuFe2O4 spin frustration. This increases the magnetic transition temperature substantially—from 240 kelvin for LuFe2O4 (ref. 18) to 281 kelvin for (LuFeO3)9/(LuFe2O4)1. Moreover, the ferroelectric order couples to the ferrimagnetism, enabling direct electric-field control of magnetism at 200 kelvin. Our results demonstrate a design methodology for creating higher-temperature magnetoelectric multiferroics by exploiting a combination of geometric frustration, lattice distortions and epitaxial engineering.


Microscopy and Microanalysis | 2012

In situ electron energy-loss spectroscopy in liquids.

Megan E. Holtz; Yingchao Yu; Jie Gao; Héctor D. Abruña; David A. Muller

In situ scanning transmission electron microscopy (STEM) through liquids is a promising approach for exploring biological and materials processes. However, options for in situ chemical identification are limited: X-ray analysis is precluded because the liquid cell holder shadows the detector and electron energy-loss spectroscopy (EELS) is degraded by multiple scattering events in thick layers. Here, we explore the limits of EELS in the study of chemical reactions in their native environments in real time and on the nanometer scale. The determination of the local electron density, optical gap, and thickness of the liquid layer by valence EELS is demonstrated. By comparing theoretical and experimental plasmon energies, we find that liquids appear to follow the free-electron model that has been previously established for solids. Signals at energies below the optical gap and plasmon energy of the liquid provide a high signal-to-background ratio regime as demonstrated for LiFePO4 in an aqueous solution. The potential for the use of valence EELS to understand in situ STEM reactions is demonstrated for beam-induced deposition of metallic copper: as copper clusters grow, EELS develops low-loss peaks corresponding to metallic copper. From these techniques, in situ imaging and valence EELS offer insights into the local electronic structure of nanoparticles and chemical reactions.


Nature Communications | 2015

Nanoscale assembly processes revealed in the nacroprismatic transition zone of Pinna nobilis mollusc shells

Robert Hovden; Stephan E. Wolf; Megan E. Holtz; Frédéric Marin; David A. Muller; Lara A. Estroff

Intricate biomineralization processes in molluscs engineer hierarchical structures with meso-, nano- and atomic architectures that give the final composite material exceptional mechanical strength and optical iridescence on the macroscale. This multiscale biological assembly inspires new synthetic routes to complex materials. Our investigation of the prism–nacre interface reveals nanoscale details governing the onset of nacre formation using high-resolution scanning transmission electron microscopy. A wedge-polishing technique provides unprecedented, large-area specimens required to span the entire interface. Within this region, we find a transition from nanofibrillar aggregation to irregular early-nacre layers, to well-ordered mature nacre suggesting the assembly process is driven by aggregation of nanoparticles (∼50–80 nm) within an organic matrix that arrange in fibre-like polycrystalline configurations. The particle number increases successively and, when critical packing is reached, they merge into early-nacre platelets. These results give new insights into nacre formation and particle-accretion mechanisms that may be common to many calcareous biominerals.


Nature Materials | 2017

Functional electronic inversion layers at ferroelectric domain walls

Julia A. Mundy; Jakob Schaab; Yu Kumagai; Andres Cano; Massimiliano Stengel; Ingo P. Krug; Daniel M. Gottlob; Hatice Doğanay; Megan E. Holtz; Rainer Held; Zewu Yan; Edith Bourret; Claus M. Schneider; Darrell G. Schlom; David A. Muller; R. Ramesh; Nicola A. Spaldin; Dennis Meier

Ferroelectric domain walls hold great promise as functional two-dimensional materials because of their unusual electronic properties. Particularly intriguing are the so-called charged walls where a polarity mismatch causes local, diverging electrostatic potentials requiring charge compensation and hence a change in the electronic structure. These walls can exhibit significantly enhanced conductivity and serve as a circuit path. The development of all-domain-wall devices, however, also requires walls with controllable output to emulate electronic nano-components such as diodes and transistors. Here we demonstrate electric-field control of the electronic transport at ferroelectric domain walls. We reversibly switch from resistive to conductive behaviour at charged walls in semiconducting ErMnO3. We relate the transition to the formation-and eventual activation-of an inversion layer that acts as the channel for the charge transport. The findings provide new insight into the domain-wall physics in ferroelectrics and foreshadow the possibility to design elementary digital devices for all-domain-wall circuitry.


Applied Physics Letters | 2015

Tuning thermal conductivity in homoepitaxial SrTiO3 films via defects

Charles M. Brooks; Richard Wilson; A. Schäfer; Julia A. Mundy; Megan E. Holtz; David A. Muller; J. Schubert; David G. Cahill; Darrell G. Schlom

We demonstrate the ability to tune the thermal conductivity of homoepitaxial SrTiO3 films deposited by reactive molecular-beam epitaxy by varying growth temperature, oxidation environment, and cation stoichiometry. Both point defects and planar defects decrease the longitudinal thermal conductivity (k33), with the greatest decrease in films of the same composition observed for films containing planar defects oriented perpendicular to the direction of heat flow. The longitudinal thermal conductivity can be modified by as much as 80%—from 11.5 W m−1K−1 for stoichiometric homoepitaxial SrTiO3 to 2 W m−1K−1 for strontium-rich homoepitaxial Sr1+δTiOx films—by incorporating (SrO)2 Ruddlesden-Popper planar defects.


APL Materials | 2015

Epitaxial crystals of Bi2Pt2O7 pyrochlore through the transformation of δ–Bi2O3 fluorite

Araceli Gutiérrez–Llorente; Howie Joress; Arthur R. Woll; Megan E. Holtz; Matthew J. Ward; Matthew C. Sullivan; David A. Muller; Joel D. Brock

Bi2Pt2O7 pyrochlore is thought to be one of the most promising oxide catalysts for application in fuel cell technology. Unfortunately, direct film growth of Bi2Pt2O7 has not yet been achieved, owing to the difficulty of oxidizing platinum metal in the precursor material to Pt4+. In this work, in order to induce oxidation of the platinum, we annealed pulsed laser deposited films consisting of epitaxial δ–Bi2O3 and co-deposited, comparatively disordered platinum. We present synchrotron x-ray diffraction results that show the nonuniform annealed films contain the first epitaxial crystals of Bi2Pt2O7. We also visualized the pyrochlore structure by scanning transmission electron microscopy, and observed ordered cation vacancies in the epitaxial crystals formed in a bismuth-rich film but not in those formed in a platinum-rich film. The similarity between the δ–Bi2O3 and Bi2Pt2O7 structures appears to facilitate the pyrochlore formation. These results provide the only route to date for the formation of epitaxial Bi2Pt2O7.


Microscopy and Microanalysis | 2013

AirSEM: Electron Microscopy in Air, without a Specimen Chamber

Kayla X. Nguyen; Megan E. Holtz; David A. Muller

A new generation of atmospheric scanning electron microscopes (ASEMs) allow samples to be imaged in liquid or at atmospheric pressure through an electron-transparent window that separates the column of the microscope from the sample [1, 2]. One approach to dealing with the short required working distance has been to directly image into the liquid with an inverted SEM column below a silicon nitride window held by a petri dish [1]. Here, we explore an alternative design for a general-purpose field-emission AirSEM from b-Nano [2]. This is an upright geometry where the sample is mechanically positioned 50-200 microns below electron-transparent window after a computer-controlled alignment with an optical microscope (Fig. 1a). This decouples the sample from the window, allowing for its reuse. The accessibility of the sample, without the need for vacuum feedthroughs makes it very simple to add imaging modes, including secondary ion detector, x-ray mapping, and cathodoluminescence.


Nano Letters | 2017

Topological Defects in Hexagonal Manganites: Inner Structure and Emergent Electrostatics

Megan E. Holtz; Konstantin Shapovalov; Julia A. Mundy; Celesta S. Chang; Zewu Yan; Edith Bourret; David A. Muller; Dennis Meier; Andres Cano

Diverse topological defects arise in hexagonal manganites, such as ferroelectric vortices, as well as neutral and charged domain walls. The topological defects are intriguing because their low symmetry enables unusual couplings between structural, charge, and spin degrees of freedom, holding great potential for novel types of functional 2D and 1D systems. Despite the considerable advances in analyzing the different topological defects in hexagonal manganites, the understanding of their key intrinsic properties is still rather limited and disconnected. In particular, a rapidly increasing number of structural variants is reported without clarifying their relation, leading to a zoo of seemingly unrelated topological textures. Here, we combine picometer-precise scanning-transmission-electron microscopy with Landau theory modeling to clarify the inner structure of topological defects in Er1-xZrxMnO3. By performing a comprehensive parametrization of the inner atomic defect structure, we demonstrate that one primary length scale drives the morphology of both vortices and domain walls. Our findings lead to a unifying general picture of this type of structural topological defects. We further derive novel fundamental and universal properties, such as unusual bound-charge distributions and electrostatics at the ferroelectric vortex cores with emergent U(1) symmetry.


Microscopy and Microanalysis | 2016

Spatial Resolution in Scanning Electron Microscopy and Scanning Transmission Electron Microscopy Without a Specimen Vacuum Chamber.

Kayla X. Nguyen; Megan E. Holtz; Justin Richmond-Decker; David A. Muller

A long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscopes objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Monte Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400 μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens and in situ chemical and electrochemical processes.

Collaboration


Dive into the Megan E. Holtz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge