Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Megan Higgie is active.

Publication


Featured researches published by Megan Higgie.


Nature | 2005

Reinforcement drives rapid allopatric speciation

Megan Higgie; Keith R. McDonald; Craig Moritz

Allopatric speciation results from geographic isolation between populations. In the absence of gene flow, reproductive isolation arises gradually and incidentally as a result of mutation, genetic drift and the indirect effects of natural selection driving local adaptation. In contrast, speciation by reinforcement is driven directly by natural selection against maladaptive hybridization. This gives individuals that choose the traits of their own lineage greater fitness, potentially leading to rapid speciation between the lineages. Reinforcing natural selection on a population of one of the lineages in a mosaic contact zone could also result in divergence of the population from the allopatric range of its own lineage outside the zone. Here we test this with molecular data, experimental crosses, field measurements and mate choice experiments in a mosaic contact zone between two lineages of a rainforest frog. We show that reinforcing natural selection has resulted in significant premating isolation of a population in the contact zone not only from the other lineage but also, incidentally, from the closely related main range of its own lineage. Thus we show the potential for reinforcement to drive rapid allopatric speciation.


Proceedings of the Royal Society of London B: Biological Sciences | 2002

Positive genetic correlation between female preference and offspring fitness.

Emma Hine; Shelly Lachish; Megan Higgie; Mark W. Blows

In many species, females display preferences for extreme male signal traits, but it has not been determined if such preferences evolve as a consequence of females gaining genetic benefits from exercising choice. If females prefer extreme male traits because they indicate male genetic quality that will enhance the fitness of offspring, a genetic correlation will evolve between female preference genes and genes that confer offspring fitness. We show that females of Drosophila serrata prefer extreme male cuticular hydrocarbon (CHC) blends, and that this preference affects offspring fitness. Female preference is positively genetically correlated with offspring fitness, indicating that females have gained genetic benefits from their choice of males. Despite male CHCs experiencing strong sexual selection, the genes underlying attractive CHCs also conferred lower offspring fitness, suggesting a balance between sexual selection and natural selection may have been reached in this population.


Current Biology | 2007

The Depletion of Genetic Variance by Sexual Selection

Anna Van Homrigh; Megan Higgie; Katrina McGuigan; Mark W. Blows

Sexually selected traits display substantial genetic variance [1, 2], in conflict with the expectation that sexual selection will deplete it [3-5]. Condition dependence is thought to resolve this paradox [5-7], but experimental tests that relate the direction of sexual selection to the availability of genetic variance are lacking. Here, we show that condition-dependent expression is not sufficient to maintain genetic variance available to sexual selection in multiple male sexually selected traits. We employed an experimental design that simultaneously determined the quantitative genetic basis of nine male cuticular hydrocarbons (CHCs) of Drosophila bunnanda, the extent of condition dependence of these traits, and the strength and direction of sexual selection acting upon them. The CHCs of D. bunnanda are condition dependent, with 18% of the genetic variance in male body size explained by genetic variance in CHCs. Despite the presence of genetic variance in individual male traits, 98% of the genetic variance in CHCs was found to be orientated more than 88 degrees away from the direction of sexual selection and therefore unavailable to selection. A lack of genetic variance in male traits in the direction of sexual selection may represent a general feature of sexually selected systems, even in the presence of condition-dependent trait expression.


The American Naturalist | 2003

Genetic Constraints on the Evolution of Mate Recognition under Natural Selection

Mark W. Blows; Megan Higgie

Field populations of Drosophila serrata display reproductive character displacement in cuticular hydrocarbons (CHCs) when sympatric with Drosophila birchii. We have previously shown that the naturally occurring pattern of reproductive character displacement can be experimentally replicated by exposing field allopatric populations of D. serrata to experimental sympatry with D. birchii. Here, we tested whether the repeated evolution of reproductive character displacement in natural and experimental populations was a consequence of genetic constraints on the evolution of CHCs. The genetic variance‐covariance (G) matrices for CHCs were determined for populations of D. serrata that had evolved in either the presence or absence of D. birchii under field and experimental conditions. Natural selection on mate recognition under both field and experimental sympatric conditions increased the genetic variance in CHCs consistent with a response to selection based on rare alleles. A close association between G eigenstructure and the eigenstructure of the phenotypic divergence (D) matrix in natural and experimental populations suggested that G matrix eigenstructure may have determined the direction in which reproductive character displacement evolved during the reinforcement of mate recognition.


Evolution | 2008

The evolution of Reproductive Character Displacement Conflicts with How Sexual Selection Operates within a Species

Megan Higgie; Mark W. Blows

Abstract Processes that affect the evolution of female preferences or male display traits involved in mating decisions in different geographic areas have the potential to result in within-species divergence. This could occur via reinforcement of mate recognition in species using the same traits for species recognition and sexual selection. Sympatric individuals experience reinforcement of female preferences and male display traits, whereas allopatric individuals do not, creating the potential for divergent sexual selection in sympatric and allopatric populations. Sexual selection operates on the cuticular hydrocarbons (CHCs) of Drosophila serrata, and reinforcement on the CHCs of populations sympatric with D. birchii. Here, we manipulate sexual selection in D. serrata populations generated by hybridizing natural sympatric and allopatric populations. Under the influence of sexual selection, male CHCs evolved from an intermediate phenotype to resemble an allopatric phenotype, which was driven by female choice. Additionally, female choice resulted in evolution of an allopatric female preference, so that allopatric males were preferred to sympatric males. Allopatric CHCs and preferences represent a sexual selection optimum via female choice. Sympatric populations display suboptimal phenotypes relative to their allopatric conspecifics. The combination of reinforcement and sexual selection can therefore generate divergence in female preferences and male display traits.


The American Naturalist | 2007

Are Traits That Experience Reinforcement Also Under Sexual Selection

Megan Higgie; Mark W. Blows

Where closely related species occur in sympatry, reinforcement may result in the evolution of traits involved in species recognition that are at the same time used for within‐species mate choice. Drosophila serrata lives in forested habitat on the east coast of Australia, and over the northern half of its distribution it coexists with a closely related species, Drosophila birchii. Here we show that the strength of reinforcing selection in natural populations is sufficient to generate reproductive character displacement along a 36‐km transect across the contact between sympatric and allopatric populations of D. serrata. The sympatric and allopatric populations display genetically based differences in male cuticular hydrocarbons (CHCs), while female CHCs changed with latitude across the contact. The directional changes observed in male CHCs between sympatric and allopatric regions were the same changes that were generated by experimental sympatry in the laboratory, providing direct evidence that the changes across the contact zone are due to the presence of D. birchii. We show that sympatric and allopatric females differ in preference for male CHCs and that females from allopatric populations prefer allopatric‐like male CHCs over sympatric‐like CHCs. Male attractiveness within D. serrata may therefore be compromised by reinforcing selection, preventing the spread of sympatric‐like blends to the area of allopatry.


The American Naturalist | 2011

Persistence in Peripheral Refugia Promotes Phenotypic Divergence and Speciation in a Rainforest Frog

Maria A. Tonione; Megan Higgie; Jason B. MacKenzie; Stephen E. Williams; Jeremy VanDerWal; Craig Moritz

It is well established from the fossil record and phylogeographic analyses that late Quaternary climate fluctuations led to substantial changes in species’ distribution, but whether and how these fluctuations resulted in phenotypic divergence and speciation is less clear. This question can be addressed through detailed analysis of traits relevant to ecology and mating within and among intraspecific lineages that persisted in separate refugia. In a biogeographic system (the Australian Wet Tropics [AWT]) with a well-established history of refugial isolation during Pleistocene glacial periods, we tested whether climate-mediated changes in distribution drove genetic and phenotypic divergence in the rainforest frog Cophixalus ornatus. We combined paleomodeling and multilocus genetics to demonstrate long-term persistence within, and isolation among, one central and two peripheral refugia. In contrast to other AWT vertebrates, the three major lineages differ in ecologically relevant morphology and in mating call, reflecting divergent selection and/or genetic drift in the peripheral isolates. Divergence in mating call and contact zone analyses suggest that the lineages now represent distinct species. The results show that climate shifts can promote genetic and phenotypic divergence and, potentially, speciation and direct attention toward incorporating adaptive traits into phylogeographic studies to better resolve the mechanisms of speciation.


Genetica | 2002

Evolutionary experiments on mate recognition in the Drosophila serrata species complex

Mark W. Blows; Megan Higgie

It is becoming increasingly apparent that at least some aspects of the evolution of mate recognition may be amenable to manipulation in evolutionary experiments. Quantitative genetic analyses that focus on the genetic consequences of evolutionary processes that result in mate recognition evolution may eventually provide an understanding of the genetic basis of the process of speciation. We review a series of experiments that have attempted to determine the genetic basis of the response to natural and sexual selection on mate recognition in the Drosophila serrata species complex. The genetic basis of mate recognition has been investigated at three levels: (1) between the species of D. serrata and D. birchii using interspecific hybrids, (2) between populations of D. serrata that are sympatric and allopatric with respect to D. birchii, and (3) within populations of D. serrata. These experiments suggest that it may be possible to use evolutionary experiments to observe important events such as the reinforcement of mate recognition, or the generation of the genetic associations that are central to many sexual selection models.


PeerJ | 2014

Gender differences in conference presentations: A consequence of self-selection?

Therésa M. Jones; Kerry V. Fanson; Robert Lanfear; Matthew R. E. Symonds; Megan Higgie

Women continue to be under-represented in the sciences, with their representation declining at each progressive academic level. These differences persist despite long-running policies to ameliorate gender inequity. We compared gender differences in exposure and visibility at an evolutionary biology conference for attendees at two different academic levels: student and post-PhD academic. Despite there being almost exactly a 1:1 ratio of women and men attending the conference, we found that when considering only those who presented talks, women spoke for far less time than men of an equivalent academic level: on average student women presented for 23% less time than student men, and academic women presented for 17% less time than academic men. We conducted more detailed analyses to tease apart whether this gender difference was caused by decisions made by the attendees or through bias in evaluation of the abstracts. At both academic levels, women and men were equally likely to request a presentation. However, women were more likely than men to prefer a short talk, regardless of academic level. We discuss potential underlying reasons for this gender bias, and provide recommendations to avoid similar gender biases at future conferences.


Evolution | 2011

High-Dimensional Variance Partitioning Reveals The Modular Genetic Basis Of Adaptive Divergence In Gene Expression During Reproductive Character Displacement

Elizabeth A. McGraw; Yixin H. Ye; Brad R. Foley; Stephen F. Chenoweth; Megan Higgie; Emma Hine; Mark W. Blows

Although adaptive change is usually associated with complex changes in phenotype, few genetic investigations have been conducted on adaptations that involve sets of high‐dimensional traits. Microarrays have supplied high‐dimensional descriptions of gene expression, and phenotypic change resulting from adaptation often results in large‐scale changes in gene expression. We demonstrate how genetic analysis of large‐scale changes in gene expression generated during adaptation can be accomplished by determining high‐dimensional variance partitioning within classical genetic experimental designs. A microarray experiment conducted on a panel of recombinant inbred lines (RILs) generated from two populations of Drosophila serrata that have diverged in response to natural selection, revealed genetic divergence in 10.6% of 3762 gene products examined. Over 97% of the genetic divergence in transcript abundance was explained by only 12 genetic modules. The two most important modules, explaining 50% of the genetic variance in transcript abundance, were genetically correlated with the morphological traits that are known to be under selection. The expression of three candidate genes from these two important genetic modules was assessed in an independent experiment using qRT‐PCR on 430 individuals from the panel of RILs, and confirmed the genetic association between transcript abundance and morphological traits under selection.

Collaboration


Dive into the Megan Higgie's collaboration.

Top Co-Authors

Avatar

Mark W. Blows

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig Moritz

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Emma Hine

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge