Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew R. E. Symonds is active.

Publication


Featured researches published by Matthew R. E. Symonds.


Behavioral Ecology and Sociobiology | 2011

A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion

Matthew R. E. Symonds; Adnan Moussalli

Akaike’s information criterion (AIC) is increasingly being used in analyses in the field of ecology. This measure allows one to compare and rank multiple competing models and to estimate which of them best approximates the “true” process underlying the biological phenomenon under study. Behavioural ecologists have been slow to adopt this statistical tool, perhaps because of unfounded fears regarding the complexity of the technique. Here, we provide, using recent examples from the behavioural ecology literature, a simple introductory guide to AIC: what it is, how and when to apply it and what it achieves. We discuss multimodel inference using AIC—a procedure which should be used where no one model is strongly supported. Finally, we highlight a few of the pitfalls and problems that can be encountered by novice practitioners.


Trends in Ecology and Evolution | 2008

The evolution of pheromone diversity

Matthew R. E. Symonds; Mark A. Elgar

Pheromones are chemical signals whose composition varies enormously between species. Despite pheromones being a nearly ubiquitous form of communication, particularly among insects, our understanding of how this diversity has arisen, and the processes driving the evolution of pheromones, is less developed than that for visual and auditory signals. Studies of phylogeny, genetics and ecological processes are providing new insights into the patterns, mechanisms and drivers of pheromone evolution, and there is a wealth of information now available for analysis. Future research could profitably use these data by employing phylogenetic comparative techniques to identify ecological correlates of pheromone composition. Genetic analyses are also needed to gain a clearer picture of how changes in receivers are associated with changes in the signal.


PLOS ONE | 2006

Gender Differences in Publication Output: Towards an Unbiased Metric of Research Performance

Matthew R. E. Symonds; Neil J. Gemmell; Tamsin L. Braisher; Kylie L. Gorringe; Mark A. Elgar

We examined the publication records of a cohort of 168 life scientists in the field of ecology and evolutionary biology to assess gender differences in research performance. Clear discrepancies in publication rate between men and women appear very early in their careers and this has consequences for the subsequent citation of their work. We show that a recently proposed index designed to rank scientists fairly is in fact strongly biased against female researchers, and advocate a modified index to assess men and women on a more equitable basis.


Royal Society of London. Proceedings B. Biological Sciences | 2004

The mode of pheromone evolution: evidence from bark beetles

Matthew R. E. Symonds; Mark A. Elgar

Sex and aggregation pheromones consist of species–specific blends of chemicals. The way in which different species’ blends have evolved has been the subject of some debate. Theoretical predictions suggest that differences between species have arisen not through the accruing of small changes, but through major shifts in chemical composition. Using data on the aggregation pheromones of 34 species of bark beetle from two genera, Dendroctonus and Ips, we investigated how the distributions of the chemical components of their pheromone blends mirror their phylogenetic relationships. We tested whether there were consistent patterns that could be used to help elucidate the mode of pheromone evolution. Although there were obvious differences in pheromone blends between the two genera, the differences between species within each genus followed a less clear phylogenetic pattern. In both genera, closely related species are just as different as more distantly related species. Within Dendroctonus, particularly, most chemical components were distributed randomly across the phylogeny. Indeed, for some chemicals, closely related species may actually be more different than would be expected from a random distribution of chemical components. This argues strongly against the idea of minor shifts in pheromone evolution. Instead, we suggest that, within certain phylogenetic constraints, pheromone evolution in bark beetles is characterized by large saltational shifts, resulting in sibling species being substantially phenotypically (i.e. pheromonally) different from one another, thus agreeing with theoretical predictions.


The American Naturalist | 2010

Geographical Variation in Bill Size across Bird Species Provides Evidence for Allen’s Rule

Matthew R. E. Symonds; Glenn J. Tattersall

Allen’s rule proposes that the appendages of endotherms are smaller, relative to body size, in colder climates, in order to reduce heat loss. Empirical support for Allen’s rule is mainly derived from occasional reports of geographical clines in extremity size of individual species. Interspecific evidence is restricted to two studies of leg proportions in seabirds and shorebirds. We used phylogenetic comparative analyses of 214 bird species to examine whether bird bills, significant sites of heat exchange, conform to Allen’s rule. The species comprised eight diverse taxonomic groups—toucans, African barbets, Australian parrots, estrildid finches, Canadian galliforms, penguins, gulls, and terns. Across all species, there were strongly significant relationships between bill length and both latitude and environmental temperature, with species in colder climates having significantly shorter bills. Patterns supporting Allen’s rule in relation to latitudinal or altitudinal distribution held within all groups except the finches. Evidence for a direct association with temperature was found within four groups (parrots, galliforms, penguins, and gulls). Support for Allen’s rule in leg elements was weaker, suggesting that bird bills may be more susceptible to thermoregulatory constraints generally. Our results provide the strongest comparative support yet published for Allen’s rule and demonstrate that thermoregulation has been an important factor in shaping the evolution of bird bills.


Journal of Evolutionary Biology | 2011

Evolution of cuticular hydrocarbon diversity in ants.

E. van Wilgenburg; Matthew R. E. Symonds; Mark A. Elgar

The cuticular hydrocarbons (CHCs) of ants provide important cues for nest‐mate and caste recognition. There is enormous diversity in the composition of these CHCs, but the manner in which this diversity has evolved is poorly understood. We gathered data on CHC profiles for 56 ant species, relating this information to their phylogeny. We deduced the mode of evolution of CHC profiles by reconstructing character evolution and then relating the number of changes in CHC components along each branch of the phylogeny to the length of the branch. There was a strong correlation between branch length and number of component changes, with fewer changes occurring on short branches. Our analysis thereby indicated a gradual mode of evolution. Different ant species tend to use specific CHC structural types that are exclusive of other structural types, indicating that species differences may be generated in part by switching particular biosynthetic pathways on or off in different lineages. We found limited, and contradictory, evidence for abiotic factors (temperature and rainfall) driving change in CHC profiles.


Journal of Evolutionary Biology | 2005

The mode of evolution of aggregation pheromones in Drosophila species

Matthew R. E. Symonds; Bregje Wertheim

Aggregation pheromones are used by fruit flies of the genus Drosophila to assemble on breeding substrates, where they feed, mate and oviposit communally. These pheromones consist of species‐specific blends of chemicals. Here, using a phylogenetic framework, we examine how differences among species in these pheromone blends have evolved. Theoretical predictions, genetic evidence, and previous empirical analysis of bark beetle species, suggest that aggregation pheromones do not evolve gradually, but via major, saltational shifts in chemical composition. Using pheromone data for 28 species of Drosophila we show that, unlike with bark beetles, the distribution of chemical components among species is highly congruent with their phylogeny, with closely related species being more similar in their pheromone blends than are distantly related species. This pattern is also strong within the melanogaster species group, but less so within the virilis species group. Our analysis strongly suggests that the aggregation pheromones of Drosophila exhibit a gradual, not saltational, mode of evolution. We propose that these findings reflect the function of the pheromones in the ecology of Drosophila, which does not hinge on species specificity of aggregation pheromones as signals.


Systematic Biology | 2002

The Effects of Topological Inaccuracy in Evolutionary Trees on the Phylogenetic Comparative Method of Independent Contrasts

Matthew R. E. Symonds

Computer simulations were used to test the effect of increasing phylogenetic topological inaccuracy on the results obtained from correlation tests of independent contrasts. Predictably, increasing the number of disruptions in the tree increases the likelihood of significant error in the r values produced and in the statistical conclusions drawn from the analysis. However, the position of the disruption in the tree is important: Disruptions closer to the tips of the tree have a greater effect than do disruptions that are close to the root of the tree. Independent contrasts derived from inaccurate topologies are more likely to lead to erroneous conclusions when there is a true significant relationship between the variables being tested (i.e., they tend to be conservative). The results also suggest that random phylogenies perform no better than nonphylogenetic analyses and, under certain conditions, may perform even worse than analyses using raw species data. Therefore, the use of random phylogenies is not beneficial in the absence of knowledge of the true phylogeny.


BMC Evolutionary Biology | 2012

Can phylogeny predict chemical diversity and potential medicinal activity of plants? A case study of amaryllidaceae

Nina Rønsted; Matthew R. E. Symonds; Trine Birkholm; Søren Christensen; Alan W. Meerow; Marianne Molander; Per Mølgaard; Gitte Petersen; Nina Rasmussen; Johannes Van Staden; G.I. Stafford; Anna K. Jäger

BackgroundDuring evolution, plants and other organisms have developed a diversity of chemical defences, leading to the evolution of various groups of specialized metabolites selected for their endogenous biological function. A correlation between phylogeny and biosynthetic pathways could offer a predictive approach enabling more efficient selection of plants for the development of traditional medicine and lead discovery. However, this relationship has rarely been rigorously tested and the potential predictive power is consequently unknown.ResultsWe produced a phylogenetic hypothesis for the medicinally important plant subfamily Amaryllidoideae (Amaryllidaceae) based on parsimony and Bayesian analysis of nuclear, plastid, and mitochondrial DNA sequences of over 100 species. We tested if alkaloid diversity and activity in bioassays related to the central nervous system are significantly correlated with phylogeny and found evidence for a significant phylogenetic signal in these traits, although the effect is not strong.ConclusionsSeveral genera are non-monophyletic emphasizing the importance of using phylogeny for interpretation of character distribution. Alkaloid diversity and in vitro inhibition of acetylcholinesterase (AChE) and binding to the serotonin reuptake transporter (SERT) are significantly correlated with phylogeny. This has implications for the use of phylogenies to interpret chemical evolution and biosynthetic pathways, to select candidate taxa for lead discovery, and to make recommendations for policies regarding traditional use and conservation priorities.


Biological Reviews | 2005

Phylogeny and life histories of the ‘Insectivora’: controversies and consequences

Matthew R. E. Symonds

The evolutionary relationships of the eutherian order Insectivora (Lipotyphla sensu stricto) are the subject of considerable debate. The difficulties in establishing insectivore phylogeny stem from their lack of many shared derived characteristics. The grouping is therefore something of a‘wastebasket’taxon. Most of the older estimates of phylogeny, based on morphological evidence, assumed insectivore monophyly. More recently, molecular phylogenies argue strongly against monophyly, although they differ in the extent of polyphyly inferred for the order. I review the history of insectivore phylogenetics and systematics, focussing on the relationships between the six extant families (Erinaceidae ‐ hedgehogs and moonrats, Talpidae ‐ moles and desmans, Soricidae ‐ shrews, Solenodontidae ‐ solenodons, Tenrecidae ‐ tenrecs and otter‐shrews and Chrysochloridae ‐ golden moles). I then examine how these various phylogenetic hypotheses influence the results of comparative analyses and our interpretation of insectivore life‐history evolution. I assess which particular controversies have the greatest effect on results, and discuss the implications for comparative analyses where the phylogeny is controversial. I also explore and suggest explanations for certain insectivore life‐history trends: increased gestation length and litter size in tenrecs, increased encephalization in moles, and the mixed fast and slow life‐history strategies in solenodons. Finally, I consider the implications for comparative analyses of the recent strongly supported phylogenetic hypothesis of an endemic African clade of mammals that includes the insectivore families of tenrecs and golden moles.

Collaboration


Dive into the Matthew R. E. Symonds's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

I-Ping Chen

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Janet L. Gardner

Australian National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge