Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Megan L. O'Mara is active.

Publication


Featured researches published by Megan L. O'Mara.


Science | 2014

Mechanism of Activation of Protein Kinase JAK2 by the Growth Hormone Receptor

Andrew J. Brooks; Wen Dai; Megan L. O'Mara; Daniel Abankwa; Yash Chhabra; Rebecca Pelekanos; Olivier Gardon; Kathryn A. Tunny; Kristopher M. Blucher; Craig J. Morton; Michael W. Parker; Emma Sierecki; Yann Gambin; Guillermo A. Gomez; Kirill Alexandrov; Ian A. Wilson; Manolis Doxastakis; Alan E. Mark; Michael J. Waters

Introduction Class I cytokines regulate key processes such as growth, lactation, hematopoiesis, and immune function and contribute to oncogenesis. Although the extracellular domain structures of their receptors are well characterized, little is known about how the receptors activate their associated JAK (Janus kinase) protein kinases. We provide a mechanistic description for this process, focusing on the growth hormone (GH) receptor and its associated JAK2. Receptor-JAK2 activation process. (Top) Cartoons of the GH receptor basal state (state 1, left) and the active state (state 2, right) with (Bottom) transmembrane helix alignments for these states derived by modeling. GHR, GH receptor. Rationale We tested whether the receptor exists as a dimer in the inactive state by homo-FRET [fluorescence resonance energy transfer (FRET) between the proteins labeled with the same fluorophore] and other means. Then, to define receptor movements resulting from activation, we attached FRET reporters to the receptor below the cell membrane and correlated their movement with receptor activation, measured as increased cell proliferation. We controlled the position of the transmembrane helices with leucine zippers and mutagenesis, and we again monitored FRET and receptor activation. We used cysteine cross-linking data to define the faces of the transmembrane helices in contact in the basal state and verified this with molecular dynamics, which allowed us to model the activation process. We also used FRET reporters to monitor the movement of JAK2, and we matched this with molecular dynamics docking of the crystal structures of the kinase and its pseudokinase domains to derive a model for activation, which we then verified experimentally. Results We found that the GH receptor exists predominantly as a dimer in vivo, held together by its transmembrane helices. These helices are parallel in the basal state, and binding of the hormone converts them into a left-hand crossover state that induces separation of helices at the lower transmembrane boundary (hence, Box1 separation). This movement is triggered by increased proximity of the juxtamembrane sequences, a consequence of locking together of the lower module of the extracellular domain on hormone binding. This movement is triggered by increased proximity of the juxtamembrane sequences , a Both this locking and the helix state transition require rotation of the receptors, but the key outcome is separation of the Box1 sequences. Because these sequences are bound to the JAK2 FERM (4.1, ezrin, radixin, moesin) domains, this separation results in removal of the pseudokinase inhibitory domain of one JAK2, which is blocking the kinase domain of the other JAK2, and vice versa. This brings the two kinase domains into productive apposition, triggering JAK2 activation. We verified this mechanism by kinase-pseudokinase domain swap, by changes in JAK2 FRET signal on activation, by showing association of pseudokinase-kinase domain pairs, and by docking of the crystal structures. An animation of our complete model of GH receptor activation is provided at http://web-services.imb.uq.edu.au/waters/hgh.html. Conclusion The proposed mechanism will be useful in understanding the many actions of GH, which include altered growth, metabolism, and bone turnover. We expect that it may extend to other members of this important receptor family. The mechanism provides a molecular basis for understanding the oncogenic JAK2 mutations responsible for polycythemia vera and certain other hematologic disorders and may thus be of value in the design of small-molecule inhibitors of clinical applicability. Signaling from JAK (Janus kinase) protein kinases to STAT (signal transducers and activators of transcription) transcription factors is key to many aspects of biology and medicine, yet the mechanism by which cytokine receptors initiate signaling is enigmatic. We present a complete mechanistic model for activation of receptor-bound JAK2, based on an archetypal cytokine receptor, the growth hormone receptor. For this, we used fluorescence resonance energy transfer to monitor positioning of the JAK2 binding motif in the receptor dimer, substitution of the receptor extracellular domains with Jun zippers to control the position of its transmembrane (TM) helices, atomistic modeling of TM helix movements, and docking of the crystal structures of the JAK2 kinase and its inhibitory pseudokinase domain with an opposing kinase-pseudokinase domain pair. Activation of the receptor dimer induced a separation of its JAK2 binding motifs, driven by a ligand-induced transition from a parallel TM helix pair to a left-handed crossover arrangement. This separation leads to removal of the pseudokinase domain from the kinase domain of the partner JAK2 and pairing of the two kinase domains, facilitating trans-activation. This model may well generalize to other class I cytokine receptors. A molecular mechanism for transmembrane signaling by the growth hormone receptor is elucidated. [Also see Perspective by Wells and Kossiakoff] The Hormones Message The receptor for growth hormone is a well-studied representative of a family of cytokine receptors through which binding of hormone molecules at the cell surface is converted into a biochemical signal within the cell. Brooks et al. (10.1126/science.1249783; see the Perspective by Wells and Kossiakoff) used a combination of crystal structures, biophysical measurements, cell biology experiments with modified receptors, and molecular dynamics and modeling to decipher how the receptor actually transmits the information that a hormone molecule is bound. The results suggest that the receptors exist in inactive dimeric complexes in which two associated JAK2 protein kinase molecules interact in an inhibitory manner. Binding of growth hormone causes a structural change in the receptor that results in movement of the receptor intracellular domains apart from one another. This relieves the inhibition of the JAK2 molecules and allows them to activate one another, thus initiating the cellular response to the hormone.


Trends in Biochemical Sciences | 2009

ABC transporters: a riddle wrapped in a mystery inside an enigma

Peter M. Jones; Megan L. O'Mara; Anthony M. George

ATP-binding cassette (ABC) transporters form one of the largest and most ancient of protein families. ABC transporters couple hydrolysis of ATP to vectorial translocation of diverse substrates across cellular membranes. Many human ABC transporters are medically important in causing, for example, multidrug resistance to cytotoxic drugs. Seven complete prokaryotic structures and one eukaryotic structure have been solved for transporters from 2002 to date, and a wealth of research is being conducted on and around these structures to resolve the mechanistic conundrum of how these transporters couple ATP hydrolysis in cytosolic domains to substrate translocation through the transmembrane pore. Many questions remained unanswered about this mechanism, despite a plethora of data and a number of interesting and controversial models.


Nature Medicine | 2014

The ryanodine receptor store-sensing gate controls Ca2+ waves and Ca2+-triggered arrhythmias

Wenqian Chen; Ruiwu Wang; Biyi Chen; Xiaowei Zhong; Huihui Kong; Yunlong Bai; Qiang Zhou; Cuihong Xie; Jingqun Zhang; Ang Guo; Xixi Tian; Peter P. Jones; Megan L. O'Mara; Yingjie Liu; Tao Mi; Lin Zhang; Jeff Bolstad; Lisa Semeniuk; Hongqiang Cheng; Jianlin Zhang; Ju Chen; D. Peter Tieleman; Anne M. Gillis; Henry J. Duff; Michael Fill; Long-Sheng Song; S. R. Wayne Chen

Spontaneous Ca2+ release from intracellular stores is important for various physiological and pathological processes. In cardiac muscle cells, spontaneous store overload–induced Ca2+ release (SOICR) can result in Ca2+ waves, a major cause of ventricular tachyarrhythmias (VTs) and sudden death. The molecular mechanism underlying SOICR has been a mystery for decades. Here we show that a point mutation, E4872A, in the helix bundle crossing region (the proposed gate) of the cardiac ryanodine receptor (RyR2) completely abolishes luminal, but not cytosolic, Ca2+ activation of RyR2. The introduction of metal-binding histidines at this site converts RyR2 into a luminal Ni2+-gated channel. Mouse hearts harboring a heterozygous RyR2 mutation at this site (E4872Q) are resistant to SOICR and are completely protected against Ca2+-triggered VTs. These data show that the RyR2 gate directly senses luminal (store) Ca2+, explaining the regulation of RyR2 by luminal Ca2+, the initiation of Ca2+ waves and Ca2+-triggered arrhythmias. This newly identified store-sensing gate structure is conserved in all RyR and inositol 1,4,5-trisphosphate receptor isoforms.


Biophysical Journal | 2004

Conduction mechanisms of chloride ions in ClC-type channels

Ben Corry; Megan L. O'Mara; Shin-Ho Chung

The conduction properties of ClC-0 and ClC-1 chloride channels are examined using electrostatic calculations and three-dimensional Brownian dynamics simulations. We create an open-state configuration of the prokaryotic ClC Cl(-) channel using its known crystallographic structure as a basis. Two residues that are occluding the channel are slowly pushed outward with molecular dynamics to create a continuous ion-conducting path with the minimum radius of 2.5 A. Then, retaining the same pore shape, the prokaryotic ClC channel is converted to either ClC-0 or ClC-1 by replacing all the nonconserved dipole-containing and charged amino acid residues. Employing open-state ClC-0 and ClC-1 channel models, current-voltage curves consistent with experimental measurements are obtained. We find that conduction in these pores involves three ions. We locate the binding sites, as well as pinpointing the rate-limiting steps in conduction, and make testable predictions about how the single channel current across ClC-0 and ClC-1 will vary as the ionic concentrations are increased. Finally, we demonstrate that a ClC-0 homology model created from an alternative sequence alignment fails to replicate any of the experimental observations.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Structural arrangement of the transmission interface in the antigen ABC transport complex TAP

Giani Oancea; Megan L. O'Mara; W. F. Drew Bennett; D. Peter Tieleman; Rupert Abele; Robert Tampé

The transporter associated with antigen processing (TAP) represents a focal point in the immune recognition of virally or malignantly transformed cells by translocating proteasomal degradation products into the endoplasmic reticulum–lumen for loading of MHC class I molecules. Based on a number of experimental data and the homology to the bacterial ABC exporter Sav1866, we constructed a 3D structural model of the core TAP complex and used it to examine the interface between the transmembrane and nucleotide-binding domains (NBD) by cysteine-scanning and cross-linking approaches. Herein, we demonstrate the functional importance of the newly identified X-loop in the NBD in coupling substrate binding to downstream events in the transport cycle. We further verified domain swapping in a heterodimeric ABC half-transporter complex by cysteine cross-linking. Strikingly, either substrate binding or translocation can be blocked by cross-linking the X-loop to coupling helix 2 or 1, respectively. These results resolve the structural arrangement of the transmission interface and point to different functions of the cytosolic loops and coupling helices in substrate binding, signaling, and transport.


FEBS Letters | 2007

P-glycoprotein models of the apo and ATP-bound states based on homology with Sav1866 and MalK

Megan L. O'Mara; D. Peter Tieleman

We exploit the biochemical and sequence similarity between Staphylococcus aureus Sav1866 and P‐glycoprotein to develop a homology model of P‐glycoprotein representing an ATP‐bound state, which captures the major features of the low‐resolution EM structure and is consistent with cysteine mutagenesis studies. Using insights from the MalK crystal structures and BtuCD simulations, we model two nucleotide‐free conformations. Conformational changes are characterized by pincering rigid‐body rotations of the nucleotide‐binding domains, inducing transmembrane domain reorganizations which correspond to the two lowest frequency normal modes of the protein. These conformations (see supplementary material) may characterize some of the major steps in the nucleotide catalytic cycle.


Biochimica et Biophysica Acta | 2008

ATP-binding cassette transporters in Escherichia coli

Anastassiia Moussatova; Christian Kandt; Megan L. O'Mara; D. Peter Tieleman

ATP-binding cassette (ABC) transporters are integral membrane proteins that actively transport molecules across cell membranes. In Escherichia coli they consist primarily of import systems that involve in addition to the ABC transporter itself a substrate binding protein and outer membrane receptors or porins, and a number of transporters with varied functions. Recent crystal structures of a number of ATPase domains, substrate binding proteins, and full-length transporters have given new insight in the molecular basis of transport. Bioinformatics approaches allow an approximate identification of all ABC transporters in E. coli and their relation to other known transporters. Computational approaches involving modeling and simulation are beginning to yield insight into the dynamics of the transporters. We summarize the function of the known ABC transporters in E. coli and mechanistic insights from structural and computational studies.


Nature Chemical Biology | 2014

Imperfect coordination chemistry facilitates metal ion release in the Psa permease

Rafael M. Couñago; Miranda P. Ween; Stephanie L. Begg; Megha Bajaj; Johannes Zuegg; Megan L. O'Mara; Matthew A. Cooper; Alastair G. McEwan; James C. Paton; Bostjan Kobe; Christopher A. McDevitt

The relative stability of divalent first-row transition metal ion complexes, as defined by the Irving-Williams series, poses a fundamental chemical challenge for selectivity in bacterial metal ion acquisition. Here we show that although the substrate-binding protein of Streptococcus pneumoniae, PsaA, is finely attuned to bind its physiological substrate manganese, it can also bind a broad range of other divalent transition metal cations. By combining high-resolution structural data, metal-binding assays and mutational analyses, we show that the inability of open-state PsaA to satisfy the preferred coordination chemistry of manganese enables the protein to undergo the conformational changes required for cargo release to the Psa permease. This is specific for manganese ions, whereas zinc ions remain bound to PsaA. Collectively, these findings suggest a new ligand binding and release mechanism for PsaA and related substrate-binding proteins that facilitate specificity for divalent cations during competition from zinc ions, which are more abundant in biological systems.


Molecular Microbiology | 2014

AdcA and AdcAII employ distinct zinc acquisition mechanisms and contribute additively to zinc homeostasis in Streptococcus pneumoniae

Charles D. Plumptre; Bart A. Eijkelkamp; Jacqueline R. Morey; Felix Behr; Rafael M. Couñago; Abiodun D. Ogunniyi; Bostjan Kobe; Megan L. O'Mara; James C. Paton; Christopher A. McDevitt

Streptococcus pneumoniae is a globally significant human pathogen responsible for nearly 1 million deaths annually. Central to the ability of S. pneumoniae to colonize and mediate disease in humans is the acquisition of zinc from the host environment. Zinc uptake in S. pneumoniae occurs via the ATP‐binding cassette transporter AdcCB, and, unusually, two zinc‐binding proteins, AdcA and AdcAII. Studies have suggested that these two proteins are functionally redundant, although AdcA has remained uncharacterized by biochemical methods. Here we show that AdcA is a zinc‐specific substrate‐binding protein (SBP). By contrast with other zinc‐binding SBPs, AdcA has two zinc‐binding domains: a canonical amino‐terminal cluster A‐I zinc‐binding domain and a carboxy‐terminal zinc‐binding domain, which has homology to the zinc‐chaperone ZinT from Gram‐negative organisms. Intriguingly, this latter feature is absent from AdcAII and suggests that the two zinc‐binding SBPs of S. pneumoniae employ different modalities in zinc recruitment. We further show that AdcAII is reliant upon the polyhistidine triad proteins for zinc in vitro and in vivo. Collectively, our studies suggest that, despite the overlapping roles of the two SBPs in zinc acquisition, they may have unique mechanisms in zinc homeostasis and act in a complementary manner during host colonization.


Nature Communications | 2015

Dysregulation of Transition Metal Ion Homeostasis is the Molecular Basis for Cadmium Toxicity in Streptococcus Pneumoniae.

Stephanie L. Begg; Bart A. Eijkelkamp; Zhenyao Luo; Rafael M. Couñago; Jacqueline R. Morey; Megan J. Maher; Cheryl-lynn Y. Ong; Alastair G. McEwan; Bostjan Kobe; Megan L. O'Mara; James C. Paton; Christopher A. McDevitt

Cadmium is a transition metal ion that is highly toxic in biological systems. Although relatively rare in the Earth’s crust, anthropogenic release of cadmium since industrialization has increased biogeochemical cycling and the abundance of the ion in the biosphere. Despite this, the molecular basis of its toxicity remains unclear. Here we combine metal-accumulation assays, high-resolution structural data and biochemical analyses to show that cadmium toxicity, in Streptococcus pneumoniae, occurs via perturbation of first row transition metal ion homeostasis. We show that cadmium uptake reduces the millimolar cellular accumulation of manganese and zinc, and thereby increases sensitivity to oxidative stress. Despite this, high cellular concentrations of cadmium (~17 mM) are tolerated, with negligible impact on growth or sensitivity to oxidative stress, when manganese and glutathione are abundant. Collectively, this work provides insight into the molecular basis of cadmium toxicity in prokaryotes, and the connection between cadmium accumulation and oxidative stress.

Collaboration


Dive into the Megan L. O'Mara's collaboration.

Top Co-Authors

Avatar

Alan E. Mark

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Shin-Ho Chung

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nandhitha Subramanian

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Ian D. Kerr

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Callaghan

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Bostjan Kobe

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge