Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Megan L. Shaw is active.

Publication


Featured researches published by Megan L. Shaw.


Nature | 2010

Human Host Factors Required for Influenza Virus Replication

Renate König; Silke Stertz; Yingyao Zhou; Atsushi Inoue; H.-Heinrich Hoffmann; Suchita Bhattacharyya; Judith G. Alamares; Donna M. Tscherne; Mila Brum Ortigoza; Yuhong Liang; Qinshan Gao; Shane E. Andrews; Sourav Bandyopadhyay; Paul D. De Jesus; Buu P. Tu; Lars Pache; Crystal Shih; Anthony P. Orth; Ghislain M. C. Bonamy; Loren Miraglia; Trey Ideker; Adolfo García-Sastre; John A. T. Young; Peter Palese; Megan L. Shaw; Sumit K. Chanda

Influenza A virus is an RNA virus that encodes up to 11 proteins and this small coding capacity demands that the virus use the host cellular machinery for many aspects of its life cycle. Knowledge of these host cell requirements not only informs us of the molecular pathways exploited by the virus but also provides further targets that could be pursued for antiviral drug development. Here we use an integrative systems approach, based on genome-wide RNA interference screening, to identify 295 cellular cofactors required for early-stage influenza virus replication. Within this group, those involved in kinase-regulated signalling, ubiquitination and phosphatase activity are the most highly enriched, and 181 factors assemble into a highly significant host–pathogen interaction network. Moreover, 219 of the 295 factors were confirmed to be required for efficient wild-type influenza virus growth, and further analysis of a subset of genes showed 23 factors necessary for viral entry, including members of the vacuolar ATPase (vATPase) and COPI-protein families, fibroblast growth factor receptor (FGFR) proteins, and glycogen synthase kinase 3 (GSK3)-β. Furthermore, 10 proteins were confirmed to be involved in post-entry steps of influenza virus replication. These include nuclear import components, proteases, and the calcium/calmodulin-dependent protein kinase (CaM kinase) IIβ (CAMK2B). Notably, growth of swine-origin H1N1 influenza virus is also dependent on the identified host factors, and we show that small molecule inhibitors of several factors, including vATPase and CAMK2B, antagonize influenza virus replication.


Journal of Virology | 2006

Ebola Virus VP24 Binds Karyopherin α1 and Blocks STAT1 Nuclear Accumulation

St. Patrick Reid; Lawrence W. Leung; Amy L. Hartman; Osvaldo Martinez; Megan L. Shaw; Caroline Carbonnelle; Viktor E. Volchkov; Stuart T. Nichol; Christopher F. Basler

ABSTRACT Ebola virus (EBOV) infection blocks cellular production of alpha/beta interferon (IFN-α/β) and the ability of cells to respond to IFN-α/β or IFN-γ. The EBOV VP35 protein has previously been identified as an EBOV-encoded inhibitor of IFN-α/β production. However, the mechanism by which EBOV infection inhibits responses to IFNs has not previously been defined. Here we demonstrate that the EBOV VP24 protein functions as an inhibitor of IFN-α/β and IFN-γ signaling. Expression of VP24 results in an inhibition of IFN-induced gene expression and an inability of IFNs to induce an antiviral state. The VP24-mediated inhibition of cellular responses to IFNs correlates with the impaired nuclear accumulation of tyrosine-phosphorylated STAT1 (PY-STAT1), a key step in both IFN-α/β and IFN-γ signaling. Consistent with this proposed function for VP24, infection of cells with EBOV also confers a block to the IFN-induced nuclear accumulation of PY-STAT1. Further, VP24 is found to specifically interact with karyopherin α1, the nuclear localization signal receptor for PY-STAT1, but not with karyopherin α2, α3, or α4. Overexpression of VP24 results in a loss of karyopherin α1-PY-STAT1 interaction, indicating that the VP24-karyopherin α1 interaction contributes to the block to IFN signaling. These data suggest that VP24 is likely to be an important virulence determinant that allows EBOV to evade the antiviral effects of IFNs.


Journal of Virology | 2003

Newcastle disease virus (NDV)-based assay demonstrates interferon-antagonist activity for the NDV V protein and the Nipah virus V, W, and C proteins.

Man Seong Park; Megan L. Shaw; Jorge L. Muñoz-Jordán; Jérôme Cros; Takaaki Nakaya; Nicole M. Bouvier; Peter Palese; Adolfo García-Sastre; Christopher F. Basler

ABSTRACT We have generated a recombinant Newcastle disease virus (NDV) that expresses the green fluorescence protein (GFP) in infected chicken embryo fibroblasts (CEFs). This virus is interferon (IFN) sensitive, and pretreatment of cells with chicken alpha/beta IFN (IFN-α/β) completely blocks viral GFP expression. Prior transfection of plasmid DNA induces an IFN response in CEFs and blocks NDV-GFP replication. However, transfection of known inhibitors of the IFN-α/β system, including the influenza A virus NS1 protein and the Ebola virus VP35 protein, restores NDV-GFP replication. We therefore conclude that the NDV-GFP virus could be used to screen proteins expressed from plasmids for the ability to counteract the host cell IFN response. Using this system, we show that expression of the NDV V protein or the Nipah virus V, W, or C proteins rescues NDV-GFP replication in the face of the transfection-induced IFN response. The V and W proteins of Nipah virus, a highly lethal pathogen in humans, also block activation of an IFN-inducible promoter in primate cells. Interestingly, the amino-terminal region of the Nipah virus V protein, which is identical to the amino terminus of Nipah virus W, is sufficient to exert the IFN-antagonist activity. In contrast, the anti-IFN activity of the NDV V protein appears to be located in the carboxy-terminal region of the protein, a region implicated in the IFN-antagonist activity exhibited by the V proteins of mumps virus and human parainfluenza virus type 2.


PLOS Pathogens | 2008

Cellular Proteins in Influenza Virus Particles

Megan L. Shaw; Kathryn L. Stone; Christopher M. Colangelo; Erol E. Gulcicek; Peter Palese

Virions are thought to contain all the essential proteins that govern virus egress from the host cell and initiation of replication in the target cell. It has been known for some time that influenza virions contain nine viral proteins; however, analyses of other enveloped viruses have revealed that proteins from the host cell can also be detected in virions. To address whether the same is true for influenza virus, we used two complementary mass spectrometry approaches to perform a comprehensive proteomic analysis of purified influenza virus particles. In addition to the aforementioned nine virus-encoded proteins, we detected the presence of 36 host-encoded proteins. These include both cytoplasmic and membrane-bound proteins that can be grouped into several functional categories, such as cytoskeletal proteins, annexins, glycolytic enzymes, and tetraspanins. Interestingly, a significant number of these have also been reported to be present in virions of other virus families. Protease treatment of virions combined with immunoblot analysis was used to verify the presence of the cellular protein and also to determine whether it is located in the core of the influenza virus particle. Immunogold labeling confirmed the presence of membrane-bound host proteins on the influenza virus envelope. The identification of cellular constituents of influenza virions has important implications for understanding the interactions of influenza virus with its host and brings us a step closer to defining the cellular requirements for influenza virus replication. While not all of the host proteins are necessarily incorporated specifically, those that are and are found to have an essential role represent novel targets for antiviral drugs and for attenuation of viruses for vaccine purposes.


Journal of Virology | 2004

Nipah Virus V and W Proteins Have a Common STAT1-Binding Domain yet Inhibit STAT1 Activation from the Cytoplasmic and Nuclear Compartments, Respectively

Megan L. Shaw; Adolfo García-Sastre; Peter Palese; Christopher F. Basler

ABSTRACT In previous reports it was demonstrated that the Nipah virus V and W proteins have interferon (IFN) antagonist activity due to their ability to block signaling from the IFN-α/β receptor (J. J. Rodriguez, J. P. Parisien, and C. M. Horvath, J. Virol. 76:11476-11483, 2002; M. S. Park et al., J. Virol. 77:1501-1511, 2003). The V, W, and P proteins are all encoded by the same viral gene and share an identical 407-amino-acid N-terminal region but have distinct C-terminal sequences. We now show that the P protein also has anti-IFN function, confirming that the common N-terminal domain is responsible for the antagonist activity. Truncation of this N-terminal domain revealed that amino acids 50 to 150 retain the ability to block IFN and to bind STAT1, a key component of the IFN signaling pathway. Subcellular localization studies demonstrate that the V and P proteins are predominantly cytoplasmic whereas the W protein is localized to the nucleus. In all cases, STAT1 colocalizes with the corresponding Nipah virus protein. These interactions are sufficient to inhibit STAT1 activation, as demonstrated by the lack of STAT1 phosphorylation on tyrosine 701 in IFN-stimulated cells expressing P, V, or W. Therefore, despite their common STAT1-binding domain, the Nipah virus V and P proteins act by retaining STAT1 in the cytoplasm while the W protein sequesters STAT1 in the nucleus, creating both a cytoplasmic and a nuclear block for STAT1. We also show that the IFN antagonist activity of the P protein is not as strong as that of V or W, perhaps explaining why Nipah virus has evolved to express these two edited products.


Journal of Virology | 2005

Nuclear Localization of the Nipah Virus W Protein Allows for Inhibition of both Virus- and Toll-Like Receptor 3-Triggered Signaling Pathways

Megan L. Shaw; Washington B. Cárdenas; Dmitriy Zamarin; Peter Palese; Christopher F. Basler

ABSTRACT The Nipah virus V and W proteins, which are encoded by the P gene via RNA editing, have a common N-terminal domain but unique C-terminal domains. They localize to the cytoplasm and nucleus, respectively, and have both been shown to function as inhibitors of JAK/STAT signaling. Here we report that V and W proteins also block virus activation of the beta interferon (IFN-β) promoter and the IFN regulatory factor 3 (IRF3)-responsive IFN-stimulated gene 54 promoter. Surprisingly, only W protein shows strong inhibition of promoter activation in response to stimulation of Toll-like receptor 3 (TLR3) by extracellular double-stranded RNA. This activity is dependent on the nuclear localization of W protein. Within the unique C-terminal domain of W protein, we have identified a nuclear localization signal (NLS) that requires basic residues at positions 439, 440, and 442. This NLS is responsible for mediating the preferential interaction of W protein with karyopherin-α 3 and karyopherin-α 4. Nuclear localization of W protein therefore enables it to target both virus and TLR3 pathways, whereas the cytoplasmic V protein is restricted to inhibiting the virus pathway. We propose that this discrepancy is in part due to the V protein being less able to block signaling in response to the kinase, TBK-1, whereas both V and W can prevent promoter activation in response to IKKε. We demonstrate that, when the TLR3 pathway is stimulated, the levels of phosphorylated IRF3 are reduced in the presence of W protein but not V protein, confirming the differential effects of these proteins and illustrating that W protein-mediated inhibition is due to a loss of active IRF3.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Broad-spectrum antiviral that interferes with de novo pyrimidine biosynthesis

Hans-Heinrich Hoffmann; Andrea Kunz; Viviana Simon; Peter Palese; Megan L. Shaw

Compound A3 was identified in a high-throughput screen for inhibitors of influenza virus replication. It displays broad-spectrum antiviral activity, and at noncytotoxic concentrations it is shown to inhibit the replication of negative-sense RNA viruses (influenza viruses A and B, Newcastle disease virus, and vesicular stomatitis virus), positive-sense RNA viruses (Sindbis virus, hepatitis C virus, West Nile virus, and dengue virus), DNA viruses (vaccinia virus and human adenovirus), and retroviruses (HIV). In contrast to mammalian cells, inhibition of viral replication by A3 is absent in chicken cells, which suggests species-specific activity of A3. Correspondingly, the antiviral activity of A3 can be linked to a cellular protein, dihydroorotate dehydrogenase (DHODH), which is an enzyme in the de novo pyrimidine biosynthesis pathway. Viral replication of both RNA and DNA viruses can be restored in the presence of excess uracil, which promotes pyrimidine salvage, or excess orotic acid, which is the product of DHODH in the de novo pyrimidine biosynthesis pathway. Based on these findings, it is proposed that A3 acts by depleting pyrimidine pools, which are crucial for efficient virus replication.


Microbes and Infection | 2011

Uncovering the global host cell requirements for influenza virus replication via RNAi screening

Silke Stertz; Megan L. Shaw

Influenza virus is reliant on numerous host cell functions during its replication cycle. RNA interference technology, applied on a genome-wide level, has identified human host factors that are necessary for efficient virus replication and provides new insight into how influenza virus interacts with its host at the molecular level.


Antiviral Research | 2008

Modulation of influenza virus replication by alteration of sodium ion transport and protein kinase C activity

H.-Heinrich Hoffmann; Peter Palese; Megan L. Shaw

Abstract In recent years, increasing levels of resistance to the four FDA-approved anti-influenza virus drugs have been described and vaccine manufacturers have experienced demands that exceed their capacity. This situation underlines the urgent need for novel antivirals as well as innovations in vaccine production in preparation for the next influenza epidemic. Here we report the development of a cell-based high-throughput screen which we have used for the identification of compounds that modulate influenza virus growth either negatively or positively. We screened a library of compounds with known biological activity and identified distinct groups of inhibitors and enhancers that target sodium channels or protein kinase C (PKC). We confirmed these results in viral growth assays and find that treatment with a sodium channel opener or PKC inhibitor significantly reduces viral replication. In contrast, inhibition of sodium channels or activation of PKC leads to enhanced virus production in tissue culture. These diametrically opposing effects strongly support a role for PKC activity and the regulation of Na+ currents in influenza virus replication and both may serve as targets for antiviral drugs. Furthermore, we raise the possibility that compounds that result in increased viral titers may be beneficial for boosting the production of tissue culture-grown influenza vaccines.


Journal of Virology | 2009

Nipah Virus Sequesters Inactive STAT1 in the Nucleus via a P Gene-Encoded Mechanism

Michael J. Ciancanelli; Valentina A. Volchkova; Megan L. Shaw; Viktor E. Volchkov; Christopher F. Basler

ABSTRACT The Nipah virus (NiV) phosphoprotein (P) gene encodes the C, P, V, and W proteins. P, V, and W, have in common an amino-terminal domain sufficient to bind STAT1, inhibiting its interferon (IFN)-induced tyrosine phosphorylation. P is also essential for RNA-dependent RNA polymerase function. C is encoded by an alternate open reading frame (ORF) within the common amino-terminal domain. Mutations within residues 81 to 113 of P impaired its polymerase cofactor function, as assessed by a minireplicon assay, but these mutants retained STAT1 inhibitory function. Mutations within the residue 114 to 140 region were identified that abrogated interaction with and inhibition of STAT1 by P, V, and W without disrupting P polymerase cofactor function. Recombinant NiVs were then generated. A G121E mutation, which abrogated inhibition of STAT1, was introduced into a C protein knockout background (Cko) because the mutation would otherwise also alter the overlapping C ORF. In cell culture, relative to the wild-type virus, the Cko mutation proved attenuating but the G121E mutant virus replicated identically to the Cko virus. In cells infected with the wild-type and Cko viruses, STAT1 was nuclear despite the absence of tyrosine phosphorylation. This latter observation mirrors what has been seen in cells expressing NiV W. In the G121E mutant virus-infected cells, STAT1 was not phosphorylated and was cytoplasmic in the absence of IFN stimulation but became tyrosine phosphorylated and nuclear following IFN addition. These data demonstrate that the gene for NiV P encodes functions that sequester inactive STAT1 in the nucleus, preventing its activation and suggest that the W protein is the dominant inhibitor of STAT1 in NiV-infected cells.

Collaboration


Dive into the Megan L. Shaw's collaboration.

Top Co-Authors

Avatar

Peter Palese

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Adolfo García-Sastre

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kris M. White

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Luis Martinez-Gil

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Hans-Heinrich Hoffmann

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Juan Ayllon

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Mila Brum Ortigoza

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Pablo Abreu

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge