Megan Russell
Translational Genomics Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Megan Russell.
Nature Genetics | 2014
Pilar Ramos; Anthony N. Karnezis; David Craig; Aleksandar Sekulic; Megan Russell; William Hendricks; Jason J. Corneveaux; Michael T. Barrett; Karey Shumansky; Yidong Yang; Sohrab P. Shah; Leah M Prentice; Marco A. Marra; Jeffrey Kiefer; Victoria Zismann; Bodour Salhia; Jaime Prat; Emanuela D'Angelo; Blaise Clarke; Joseph G. Pressey; John H Farley; Stephen P Anthony; Richard Roden; Heather E. Cunliffe; David Huntsman; Jeffrey M. Trent
Small cell carcinoma of the ovary of hypercalcemic type (SCCOHT) is an extremely rare, aggressive cancer affecting children and young women. We identified germline and somatic inactivating mutations in the SWI/SNF chromatin-remodeling gene SMARCA4 in 69% (9/13) of SCCOHT cases in addition to SMARCA4 protein loss in 82% (14/17) of SCCOHT tumors but in only 0.4% (2/485) of other primary ovarian tumors. These data implicate SMARCA4 in SCCOHT oncogenesis.
Rare diseases (Austin, Tex.) | 2014
Pilar Ramos; Anthony N. Karnezis; William Hendricks; Yemin Wang; Waibhav Tembe; Victoria Zismann; Christophe Legendre; Winnie S. Liang; Megan Russell; David Craig; John H. Farley; Bradley J. Monk; Stephen P. Anthony; Aleksandar Sekulic; Heather E. Cunliffe; David Huntsman; Jeffrey M. Trent
Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT), is a rare and understudied cancer with a dismal prognosis. SCCOHTs infrequency has hindered empirical study of its biology and clinical management. However, we and others have recently identified inactivating mutations in the SWI/SNF chromatin remodeling gene SMARCA4 with concomitant loss of SMARCA4 protein in the majority of SCCOHT tumors.1–4 Here we summarize these findings and report SMARCA4 status by targeted sequencing and/or immunohistochemistry (IHC) in an additional 12 SCCOHT tumors, 3 matched germlines, and the cell line SCCOHT-1. We also report the identification of a homozygous inactivating mutation in the gene SMARCB1 in one SCCOHT tumor with wild-type SMARCA4, suggesting that SMARCB1 inactivation may also play a role in the pathogenesis of SCCOHT. To date, SMARCA4 mutations and protein loss have been reported in the majority of 69 SCCOHT cases (including 2 cell lines). These data firmly establish SMARCA4 as a tumor suppressor whose loss promotes the development of SCCOHT, setting the stage for rapid advancement in the biological understanding, diagnosis, and treatment of this rare tumor type.
Molecular Genetics & Genomic Medicine | 2015
Jesse M. Hunter; Mary Ellen Ahearn; Christopher D. Balak; Winnie S. Liang; Ahmet Kurdoglu; Jason J. Corneveaux; Megan Russell; Matthew J. Huentelman; David Craig; John D. Carpten; Stephen W. Coons; Daphne E. deMello; Judith G. Hall; Saunder Bernes; Lisa Baumbach-Reardon
Neuromuscular diseases (NMD) account for a significant proportion of infant and childhood mortality and devastating chronic disease. Determining the specific diagnosis of NMD is challenging due to thousands of unique or rare genetic variants that result in overlapping phenotypes. We present four unique childhood myopathy cases characterized by relatively mild muscle weakness, slowly progressing course, mildly elevated creatine phosphokinase (CPK), and contractures. We also present two additional cases characterized by severe prenatal/neonatal myopathy. Prior extensive genetic testing and histology of these cases did not reveal the genetic etiology of disease. Here, we applied whole exome sequencing (WES) and bioinformatics to identify likely causal pathogenic variants in each pedigree. In two cases, we identified novel pathogenic variants in COL6A3. In a third case, we identified novel likely pathogenic variants in COL6A6 and COL6A3. We identified a novel splice variant in EMD in a fourth case. Finally, we classify two cases as calcium channelopathies with identification of novel pathogenic variants in RYR1 and CACNA1S. These are the first cases of myopathies reported to be caused by variants in COL6A6 and CACNA1S. Our results demonstrate the utility and genetic diagnostic value of WES in the broad class of NMD phenotypes.
Molecular Cancer Research | 2015
Ping Fan; Heather E. Cunliffe; Philipp Y. Maximov; Fadeke A. Agboke; Russell E. McDaniel; Xiaojun Zou; Pilar Ramos; Megan Russell; V. Craig Jordan
Estrogen (E2) exerts a dual function on E2-deprived breast cancer cells, with both initial proliferation and subsequent induction of stress responses to cause apoptosis. However, the mechanism by which E2 integrally regulates cell growth or apoptosis-associated pathways remains to be elucidated. Here, E2 deprivation results in many alterations in stress-responsive pathways. For instance, E2-deprived breast cancer cells had higher basal levels of stress-activated protein kinase, c-Jun N-terminal kinase (JNK), compared with wild-type MCF-7 cells. E2 treatment further constitutively activated JNK after 24 hours. However, inhibition of JNK (SP600125) was unable to abolish E2- induced apoptosis, whereas SP600125 alone arrested cells at the G2 phase of the cell cycle and increased apoptosis. Further examination showed that inhibition of JNK increased gene expression of TNFα and did not effectively attenuate expression of apoptosis-related genes induced by E2. A notable finding was that E2 regulated both JNK and Akt as the downstream signals of insulin-like growth factor-1 receptor (IGFIR)/PI3K, but with distinctive modulation patterns: JNK was constitutively activated, whereas Akt and Akt-associated proteins, such as PTEN and mTOR, were selectively degraded. Endoplasmic reticulum–associated degradation (ERAD) was involved in the selective protein degradation. These findings highlight a novel IGFIR/PI3K/JNK axis that plays a proliferative role during the prelude to E2-induced apoptosis and that the endoplasmic reticulum is a key regulatory site to decide cell fate after E2 treatment. Implications: This study provides a new rationale for further exploration of E2-induced apoptosis to improve clinical benefit. Mol Cancer Res; 13(10); 1367–76. ©2015 AACR.
pacific symposium on biocomputing | 2014
Sara Nasser; Ahmet A Kurdolgu; Tyler Izatt; Jessica Aldrich; Megan Russell; Alexis Christoforides; Wiabhav Tembe; Jeffery A Keifer; Jason J. Corneveaux; Sara A. Byron; Karen M. Forman; Clarice Zuccaro; Jonathan J. Keats; Patricia LoRusso; John D. Carpten; Jeffrey M. Trent; David Craig
The ability to rapidly sequence the tumor and germline DNA of an individual holds the eventual promise of revolutionizing our ability to match targeted therapies to tumors harboring the associated genetic biomarkers. Analyzing high throughput genomic data consisting of millions of base pairs and discovering alterations in clinically actionable genes in a structured and real time manner is at the crux of personalized testing. This requires a computational architecture that can monitor and track a system within a regulated environment as terabytes of data are reduced to a small number of therapeutically relevant variants, delivered as a diagnostic laboratory developed test. These high complexity assays require data structures that enable real-time and retrospective ad-hoc analysis, with a capability of updating to keep up with the rapidly changing genomic and therapeutic options, all under a regulated environment that is relevant under both CMS and FDA depending on application. We describe a flexible computational framework that uses a paired tumor/normal sample allowing for complete analysis and reporting in approximately 24 hours, providing identification of single nucleotide changes, small insertions and deletions, chromosomal rearrangements, gene fusions and gene expression with positive predictive values over 90%. In this paper we present the challenges in integrating clinical, genomic and annotation databases to provide interpreted draft reports which we utilize within ongoing clinical research protocols. We demonstrate the need to retire from existing performance measurements of accuracy and specificity and measure metrics that are meaningful to a genomic diagnostic environment. This paper presents a three-tier infrastructure that is currently being used to analyze an individual genome and provide available therapeutic options via a clinical report. Our framework utilizes a non-relational variant-centric database that is scaleable to a large amount of data and addresses the challenges and limitations of a relational database system. Our system is continuously monitored via multiple trackers each catering differently to the diversity of users involved in this process. These trackers designed in analytics web-app framework provide status updates for an individual sample accurate to a few minutes. In this paper, we also present our outcome delivery process that is designed and delivered adhering to the standards defined by various regulation agencies involved in clinical genomic testing.
F1000Research | 2017
Erika Banuelos; Keri Ramsey; Newell Belnap; Malavika Krishnan; Chris Balak; Szabolcs Szelinger; Ashley L. Siniard; Megan Russell; Ryan Richholt; Matt De Both; Ignazio S. Piras; Marcus Naymik; Ana M. Claasen; Sampathkumar Rangasamy; Matthew J. Huentelman; David Craig; Philippe M. Campeau; Vinodh Narayanan; Isabelle Schrauwen
Mutations disrupting presynaptic protein TBC1D24 are associated with a variable neurological phenotype, including DOORS syndrome, myoclonic epilepsy, early-infantile epileptic encephalopathy, and non-syndromic hearing loss. In this report, we describe a family segregating autosomal dominant epilepsy, and a 37-year-old Caucasian female with a severe neurological phenotype including epilepsy, Parkinsonism, psychosis, visual and auditory hallucinations, gait ataxia and intellectual disability. Whole exome sequencing revealed two missense mutations in the TBC1D24 gene segregating within this family (c.1078C>T; p.Arg360Cys and c.404C>T; p.Pro135Leu). The female proband who presents with a severe neurological phenotype carries both of these mutations in a compound heterozygous state. The p.Pro135Leu variant, however, is present in the proband’s mother and sibling as well, and is consistent with an autosomal dominant pattern linked to tonic-clonic and myoclonic epilepsy. In conclusion, we describe a single family in which TBC1D24 mutations cause expanded dominant and recessive phenotypes. In addition, we discuss and highlight that some variants in TBC1D24 might cause a dominant susceptibility to epilepsy
American Journal of Medical Genetics Part A | 2017
P. Dunn; G. P. Prigatano; Szabolcs Szelinger; J. Roth; Ashley L. Siniard; Ana M. Claasen; Ryan Richholt; M. De Both; Jason J. Corneveaux; A. M. Moskowitz; Christopher D. Balak; Ignazio S. Piras; Megan Russell; Amanda Courtright; Newell Belnap; Sampath Rangasamy; Keri Ramsey; John M. Opitz; David Craig; Vinodh Narayanan; Matthew J. Huentelman; Isabelle Schrauwen
Mutations in CASK cause X‐linked intellectual disability, microcephaly with pontine and cerebellar hypoplasia, optic atrophy, nystagmus, feeding difficulties, GI hypomotility, and seizures. Here we present a patient with a de novo carboxyl‐terminus splice site mutation in CASK (c.2521‐2A>G) and clinical features of the rare FG syndrome‐4 (FGS4). We provide further characterization of genotype–phenotype correlations in CASK mutations and the presentation of nystagmus and the FGS4 phenotype. There is considerable variability in clinical phenotype among patients with a CASK mutation, even among variants predicted to have similar functionality. Our patient presented with developmental delay, nystagmus, and severe gastrointestinal and gastroesophageal complications. From a cognitive and neuropsychological perspective, language skills and IQ are within normal range, although visual‐motor, motor development, behavior, and working memory were impaired. The c.2521‐2A>G splice mutation leads to skipping of exon 26 and a 9 base‐pair deletion associated with a cryptic splice site, leading to a 28‐AA and a 3‐AA in‐frame deletion, respectively (p.Ala841_Lys843del and p.Ala841_Glu868del). The predominant mutant transcripts contain an aberrant guanylate kinase domain and thus are predicted to degrade CASKs ability to interact with important neuronal and ocular development proteins, including FRMD7. Upregulation of CASK as well as dysregulation among a number of interactors is also evident by RNA‐seq. This is the second CASK mutation known to us as cause of FGS4.
Cold Spring Harb Mol Case Stud | 2016
Abby M. Moskowitz; Newell Belnap; Ashley L. Siniard; Szabolcs Szelinger; Ana M. Claasen; Ryan Richholt; Matt De Both; Jason J. Corneveaux; Chris Balak; Ignazio S. Piras; Megan Russell; Amanda Courtright; Sampath Rangasamy; Keri Ramsey; David Craig; Vinodh Narayanan; Matthew J. Huentelman; Isabelle Schrauwen
Recently, mutations in the zinc finger MYND-type containing 11 (ZMYND11) gene were identified in patients with autism spectrum disorders, intellectual disability, aggression, and complex neuropsychiatric features, supporting that this gene is implicated in 10p15.3 microdeletion syndrome. We report a novel de novo variant in the ZMYND11 gene (p.Ser421Asn) in a patient with a complex neurodevelopmental phenotype. The patient is a 24-yr-old Caucasian/Filipino female with seizures, global developmental delay, sensorineural hearing loss, hypotonia, dysmorphic features, and other features including a happy disposition and ataxic gait similar to Angelman syndrome. In addition, this patient had uncommon features including eosinophilic esophagitis and multiple, severe allergies not described in similar ZMYND11 cases. This new case further supports the association of ZMYND11 with autistic-like phenotypes and suggests that ZMYND11 should be included in the list of potentially causative candidate genes in cases with complex neurodevelopmental phenotypes.
Seminars in Pediatric Neurology | 2017
Brittany Gerald; Keri Ramsey; Newell Belnap; Szabolcs Szelinger; Ashley L. Siniard; Chris Balak; Megan Russell; Ryan Richholt; Matt De Both; Ana M. Claasen; Isabelle Schrauwen; Matthew J. Huentelman; David Craig; Sampathkumar Rangasamy; Vinodh Narayanan
Epileptic encephalopathies are childhood brain disorders characterized by a variety of severe epilepsy syndromes that differ by the age of onset and seizure type. Until recently, the cause of many epileptic encephalopathies was unknown. Whole exome or whole genome sequencing has led to the identification of several causal genes in individuals with epileptic encephalopathy, and the list of genes has now expanded greatly. Genetic testing with epilepsy gene panels is now done quite early in the evaluation of children with epilepsy, following brain imaging, electroencephalogram, and metabolic profile. Early infantile epileptic encephalopathy (EIEE1; OMIM #308350) is the earliest of these age-dependent encephalopathies, manifesting as tonic spasms, myoclonic seizures, or partial seizures, with severely abnormal electroencephalogram, often showing a suppression-burst pattern. In this case study, we describe a 33-month-old female child with severe, neonatal onset epileptic encephalopathy. An infantile epilepsy gene panel test revealed 2 novel heterozygous variants in the MECP2 gene; a 70-bp deletion resulting in a frameshift and truncation (p.Lys377ProfsX9) thought to be pathogenic, and a 6-bp in-frame deletion (p.His371_372del), designated as a variant of unknown significance. Based on this test result, the diagnosis of atypical Rett syndrome (RTT) was made. Family-based targeted testing and segregation analysis, however, raised questions about the pathogenicity of these specific MECP2 variants. Whole exome sequencing was performed in this family trio, leading to the discovery of a rare, de novo, missense mutation in GNAO1 (p. Leu284Ser). De novo, heterozygous mutations in GNAO1 have been reported to cause early infantile epileptic encephalopathy-17 (EIEE17; OMIM 615473). The childs severe phenotype, the family history and segregation analysis of variants and prior reports of GNAO1-linked disease allowed us to conclude that the GNAO1 mutation, and not the MECP2 variants, was the cause of this childs neurological disease. With the increased use of genetic panels and whole exome sequencing, we will be confronted with lists of gene variants suspected to be pathogenic or of unknown significance. It is important to integrate clinical information, genetic testing that includes family members and correlates this with the published clinical and scientific literature, to help one arrive at the correct genetic diagnosis.
BMC Medical Genomics | 2017
Rebecca F. Halperin; John D. Carpten; Zarko Manojlovic; Jessica Aldrich; Jonathan J. Keats; Sara A. Byron; Winnie S. Liang; Megan Russell; Daniel Enriquez; Ana M. Claasen; Irene Cherni; Baffour Awuah; Joseph Oppong; Max S. Wicha; Lisa A. Newman; Evelyn Jaigge; Seungchan Kim; David Craig
BackgroundSignificant clinical and research applications are driving large scale adoption of individualized tumor sequencing in cancer in order to identify tumors-specific mutations. When a matched germline sample is available, somatic mutations may be identified using comparative callers. However, matched germline samples are frequently not available such as with archival tissues, which makes it difficult to distinguish somatic from germline variants. While population databases may be used to filter out known germline variants, recent studies have shown private germline variants result in an inflated false positive rate in unmatched tumor samples, and the number germline false positives in an individual may be related to ancestry.MethodsFirst, we examined the relationship between the germline false positives and ancestry. Then we developed and implemented a tumor only caller (LumosVar) that leverages differences in allelic frequency between somatic and germline variants in impure tumors. We used simulated data to systematically examine how copy number alterations, tumor purity, and sequencing depth should affect the sensitivity of our caller. Finally, we evaluated the caller on real data.ResultsWe find the germline false-positive rate is significantly higher for individuals of non-European Ancestry largely due to the limited diversity in public polymorphism databases and due to population-specific characteristics such as admixture or recent expansions. Our Bayesian tumor only caller (LumosVar) is able to greatly reduce false positives from private germline variants, and our sensitivity is similar to predictions based on simulated data.ConclusionsTaken together, our results suggest that studies of individuals of non-European ancestry would most benefit from our approach. However, high sensitivity requires sufficiently impure tumors and adequate sequencing depth. Even in impure tumors, there are copy number alterations that result in germline and somatic variants having similar allele frequencies, limiting the sensitivity of the approach. We believe our approach could greatly improve the analysis of archival samples in a research setting where the normal is not available.