Meghan E. Downs
University of Houston
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Meghan E. Downs.
Journal of Applied Physiology | 2014
Alan D. Moore; Meghan E. Downs; Stuart M. C. Lee; Alan H. Feiveson; Poul Knudsen; Lori L. Ploutz-Snyder
This investigation was designed to measure aerobic capacity (V̇o2peak) during and after long-duration International Space Station (ISS) missions. Astronauts (9 males, 5 females: 49 ± 5 yr, 77.2 ± 15.1 kg, 40.6 ± 6.4 ml·kg(-1)·min(-1) [mean ± SD]) performed peak cycle tests ∼90 days before flight, 15 days after launch, every ∼30 days in-flight, and on recovery days 1 (R + 1), R + 10, and R + 30. Expired metabolic gas fractions, ventilation, and heart rate (HR) were measured. Data were analyzed using mixed-model linear regression. The main findings of this study were that V̇o2peak decreased early in-flight (∼17%) then gradually increased during flight but never returned to preflight levels. V̇o2peak was lower on R + 1 and R + 10 than preflight but recovered by R + 30. Peak HR was not different from preflight at any time during or following flight. A sustained decrease in V̇o2peak during and/or early postflight was not a universal finding in this study, since seven astronauts were able to attain their preflight V̇o2peak levels either at some time during flight or on R + 1. Four of these astronauts performed in-flight exercise at higher intensities compared with those who experienced a decline in V̇o2peak, and three had low aerobic capacities before flight. These data indicate that, while V̇o2peak may be difficult to maintain during long-duration ISS missions, aerobic deconditioning is not an inevitable consequence of long-duration spaceflight.
Frontiers in Systems Neuroscience | 2015
Vincent Koppelmans; Ajitkumar P. Mulavara; Peng Yuan; K. Cassady; Katherine A. Cooke; Scott J. Wood; Patricia A. Reuter-Lorenz; Yiri E. De Dios; Vahagn Stepanyan; D. Szecsy; Nichole Gadd; Igor Kofman; Jessica M. Scott; Meghan E. Downs; Jacob J. Bloomberg; Lori L. Ploutz-Snyder; Rachael D. Seidler
Background: Spaceflight has been associated with changes in gait and balance; it is unclear whether it affects cognition. Head down tilt bed rest (HDBR) is a microgravity analog that mimics cephalad fluid shifts and body unloading. In consideration of astronaut’s health and mission success, we investigated the effects of HDBR on cognition and sensorimotor function. Furthermore, we investigated if exercise mitigates any cognitive and sensorimotor sequelae of spaceflight. Method: We conducted a 70-day six-degree HDBR study in 10 male subjects who were randomly assigned to a HDBR supine exercise or a HDBR control group. Cognitive measures (i.e., processing speed, manual dexterity, psychomotor speed, visual dependency, and 2D and 3D mental rotation) and sensorimotor performance (functional mobility (FMT) and balance performance) were collected at 12 and 8 days pre-HDBR, at 7, 50, and 70 days in HDBR, and at 8 and 12 days post-HDBR. Exercise comprised resistance training, and continuous and high-intensity interval aerobic exercise. We also repeatedly assessed an outside-of-bed rest control group to examine metric stability. Results: Small practice effects were observed in the control group for some tasks; these were taken into account when analyzing effects of HDBR. No significant effects of HDBR on cognition were observed, although visual dependency during HDBR remained stable in HDBR controls whereas it decreased in HDBR exercise subjects. Furthermore, HDBR was associated with loss of FMT and standing balance performance, which were almost fully recovered 12 days post-HDBR. Aerobic and resistance exercise partially mitigated the effects of HDBR on FMT and accelerated the recovery time course post-HDBR. Discussion: HDBR did not significantly affect cognitive performance but did adversely affect FMT and standing balance performance. Exercise had some protective effects on the deterioration and recovery of FMT.
Medicine and Science in Sports and Exercise | 2014
Meghan E. Downs; Kyle J. Hackney; David F. Martin; Timothy L. Caine; D. A. Cunningham; Daniel T. O'Connor; Lori L. Ploutz-Snyder
UNLABELLED Blood flow-restricted resistance exercise improves muscle strength; however, the cardiovascular response is not well understood. PURPOSE This investigation measured local vascular responses, tissue oxygen saturation (StO2), and cardiovascular responses during supine unilateral leg press and heel raise exercise in four conditions: high load with no occlusion cuff, low load with no occlusion cuff, and low load with occlusion cuff pressure set at 1.3 times resting diastolic blood pressure (BFRDBP) or at 1.3 times resting systolic blood pressure (BFRSBP). METHODS Subjects (N = 13) (men/women, 5/8, 31.8 ± 12.5 yr, 68.3 ± 12.1 kg, mean ± SD) performed three sets of leg press and heel raise to fatigue with 90-s rest. Artery diameter, velocity time integral, and stroke volume were measured using two-dimensional and Doppler ultrasound at rest and immediately after exercise. HR was monitored using a three-lead ECG. Finger blood pressure was acquired by photoplethysmography. Vastus lateralis StO2 was measured using near-infrared spectroscopy. A repeated-measures ANOVA was used to analyze exercise work and StO2. Multilevel modeling was used to evaluate the effect of exercise condition on vascular and cardiovascular variables. Statistical significance was set a priori at P < 0.05. RESULTS Artery diameter did not change from baseline during any of the exercise conditions. Blood flow increased after exercise in each condition except BFRSBP. StO2 decreased during exercise and recovered to baseline levels during rest only in low load with no occlusion cuff and high load with no occlusion cuff. HR, stroke volume, and cardiac output (Q˙) responses to exercise were blunted in blood flow-restricted exercise. Blood pressure was elevated during rest intervals in blood flow-restricted exercise. CONCLUSIONS Our results demonstrate that cuff pressure alters the hemodynamic responses to resistance exercise. These findings warrant further evaluations in individuals presenting cardiovascular risk factors.
Journal of Strength and Conditioning Research | 2015
Kyle J. Hackney; Jessica M. Scott; Andrea M. Hanson; Kirk L. English; Meghan E. Downs; Lori L. Ploutz-Snyder
Abstract Hackney, KJ, Scott, JM, Hanson, AM, English, KL, Downs, ME, and Ploutz-Snyder, LL. The astronaut-athlete: optimizing human performance in space. J Strength Cond Res 29(12): 3531–3545, 2015—It is well known that long-duration spaceflight results in deconditioning of neuromuscular and cardiovascular systems, leading to a decline in physical fitness. On reloading in gravitational environments, reduced fitness (e.g., aerobic capacity, muscular strength, and endurance) could impair human performance, mission success, and crew safety. The level of fitness necessary for the performance of routine and off-nominal terrestrial mission tasks remains an unanswered and pressing question for scientists and flight physicians. To mitigate fitness loss during spaceflight, resistance and aerobic exercise are the most effective countermeasure available to astronauts. Currently, 2.5 h·d−1, 6–7 d·wk−1 is allotted in crew schedules for exercise to be performed on highly specialized hardware on the International Space Station (ISS). Exercise hardware provides up to 273 kg of loading capability for resistance exercise, treadmill speeds between 0.44 and 5.5 m·s−1, and cycle workloads from 0 and 350 W. Compared to ISS missions, future missions beyond low earth orbit will likely be accomplished with less vehicle volume and power allocated for exercise hardware. Concomitant factors, such as diet and age, will also affect the physiologic responses to exercise training (e.g., anabolic resistance) in the space environment. Research into the potential optimization of exercise countermeasures through use of dietary supplementation, and pharmaceuticals may assist in reducing physiological deconditioning during long-duration spaceflight and have the potential to enhance performance of occupationally related astronaut tasks (e.g., extravehicular activity, habitat construction, equipment repairs, planetary exploration, and emergency response).
Journal of Cachexia, Sarcopenia and Muscle | 2017
Jessica M. Scott; David S. Martin; Robert Ploutz-Snyder; Timothy Matz; Timothy L. Caine; Meghan E. Downs; Kyle J. Hackney; Roxanne E. Buxton; Jeffrey W. Ryder; Lori L. Ploutz-Snyder
The strong link between reduced muscle mass and morbidity and mortality highlights the urgent need for simple techniques that can monitor change in skeletal muscle cross‐sectional area (CSA). Our objective was to examine the validity of panoramic ultrasound to detect change in quadriceps and gastrocnemius size in comparison with magnetic resonance imaging (MRI) in subjects randomized to 70 days of bed rest (BR) with or without exercise.
Medicine and Science in Sports and Exercise | 2016
Meghan E. Downs; Roxanne E. Buxton; Elizabeth Goetchius; John K. DeWitt; Lori L. Ploutz-Snyder
Change in maximal aerobic capacity (VO2pk) in response to exercise training and disuse is highly variable among individuals. Factors that could contribute to the observed variability (lean mass, daily activity, diet, sleep, stress) are not routinely controlled in studies. The NASA bed rest (BR) studies use a highly controlled hospital based model as an analog of spaceflight. In this study, diet, hydration, physical activity and light/dark cycles were precisely controlled and provided the opportunity to investigate individual variability. PURPOSE. Evaluate the contribution of exercise intensity and lean mass on change in VO2pk during 70-d of BR or BR + exercise. METHODS. Subjects completed 70-d of BR alone (CON, N=9) or BR + exercise (EX, N=17). The exercise prescription included 6 d/wk of aerobic exercise at 70 - 100% of max and 3 d/wk of lower body resistance exercise. Subjects were monitored 24 hr/d. VO2pk and lean mass (iDXA) were measured pre and post BR. ANOVA was used to evaluate changes in VO2pk pre to post BR. Subjects were retrospectively divided into high and low responders based on change in VO2pk (CON > 20% loss, n=5; EX >10% loss, n=4, or 5% gain, n=4) to further understand individual variability. RESULTS. VO2pk decreased from pre to post BR in CON (P<0.05) and was maintained in EX; however, significant individual variability was observed (CON: -22%, range: -39% to -.5%; EX: -1.8%, range: -16% to 12.6%). The overlap in ranges between groups included 3 CON who experienced smaller reduction in VO2pk (<16%) than the worst responding EX subjects. Individual variability was maintained when VO2pk was normalized to lean mass (range, CON: -33.7% to -5.7%; EX: -15.8% to 11%), and the overlap included 5 CON with smaller reductions in VO2pk than the worst responding EX subjects. High responders to disuse also lost the most lean mass; however, this relationship was not maintained in EX (i.e. the largest gains/losses in lean mass were observed in both high and low responders). Change in VO2pk was not related to exercise intensity. CONCLUSION. Change in VO2pk in response to disuse and exercise was highly variable among individuals, even in this tightly controlled study. Loss in lean mass accounts for a significant degree of variability in the CON; however, training induced gains in VO2pk appear unrelated to lean mass or exercise intensity.
Aerospace medicine and human performance | 2016
Kyle J. Hackney; Meghan E. Downs; Lori L. Ploutz-Snyder
BACKGROUND Bed rest studies have shown that high load (HL) resistance training can mitigate the loss of muscle size and strength during musculoskeletal unloading; however, not all individuals are able to perform HL resistance exercise. Blood flow restricted (BFR) resistance exercise may be a novel way to prevent maladaptation to unloading without requiring HL exercise equipment. This study evaluated the muscular training adaptations to HL and BFR resistance training during unilateral lower limb suspension (ULLS), a human limb unloading model. ULLS allows for evaluation of exercise training in both weight-bearing and nonweight-bearing legs within the same individual. METHODS There were 13 participants who completed 25 d of ULLS and were counterbalanced to: 1) HL, N = 6; or 2) BFR, N = 7, training groups. During ULLS, HL and BFR performed unilateral leg press and heel raise exercise (3 d/wk). RESULTS In weight-bearing legs, both HL and BFR increased knee extensor muscle cross-sectional area (CSA) and strength. In nonweight-bearing legs, knee extensor CSA and strength increased only in HL and decreased with BFR. CONCLUSION HL and BFR resistance exercise were both effective exercise programs for the weight-bearing leg. However, BFR exercise was not as effective as HL resistance exercise in the nonweight-bearing leg. These data show that exercise that improved muscle CSA and strength in ambulatory weight-bearing conditions was not sufficient to maintain muscle function during unloading. For the preservation of muscle CSA and strength, BFR exercise should be considered an adjunct but not a primary exercise countermeasure for future space missions. Hackney KJ, Downs ME, Ploutz-Snyder L. Blood flow restricted exercise compared to high load resistance exercise during unloading. Aerosp Med Hum Perform. 2016; 87(8):688-696.
Aviation, Space, and Environmental Medicine | 2014
Jessica M. Scott; Kyle J. Hackney; Meghan E. Downs; Jamie Guined; Robert Ploutz-Snyder; James Fiedler; David A. Cunningham; Lori L. Ploutz-Snyder
BACKGROUND Exercise countermeasures designed to mitigate muscle atrophy during long-duration spaceflight may not be as effective if crewmembers are in negative energy balance (energy output > energy input). This study determined the energy cost of supine exercise (resistance, interval, aerobic) during the spaceflight analogue of bed rest. METHODS Nine subjects (eight men and one woman; 34.5 +/- 8.2 yr) completed 14 d of bed rest and concomitant exercise countermeasures. Body mass and basal metabolic rate (BMR) were assessed before and during bed rest. Exercise energy expenditure was measured during and immediately after [excess post-exercise oxygen consumption (EPOC)] each of five different exercise protocols (30-s, 2-min, and 4-min intervals, continuous aerobic, and a variety of resistance exercises) during bed rest. RESULTS On days when resistance and continuous aerobic exercise were performed daily, energy expenditure was significantly greater (2879 +/- 280 kcal) than 2-min (2390 +/- 237 kcal), 30-s (2501 +/- 264 kcal), or 4-min (2546 +/- 264 kcal) exercise. There were no significant differences in BMR (pre-bed rest: 1649 +/- 216 kcal; week 1: 1632 +/- 174 kcal; week 2:1657 +/- 176 kcal) or body mass (pre-bed rest: 75.2 +/- 10.1 kg; post-bed rest: 75.2 +/- 9.6 kg). DISCUSSION These findings highlight the importance of energy balance for long-duration crewmembers completing a high-intensity exercise program with multiple exercise sessions daily.
PLOS ONE | 2018
Vincent Koppelmans; Jessica M. Scott; Meghan E. Downs; K. Cassady; Peng Yuan; Ofer Pasternak; Scott J. Wood; Yiri E. De Dios; Nichole Gadd; Igor Kofman; Roy Riascos; Patricia A. Reuter-Lorenz; Jacob J. Bloomberg; Ajitkumar P. Mulavara; Lori L. Ploutz-Snyder; Rachael D. Seidler
Purpose Spaceflight negatively affects sensorimotor behavior; exercise mitigates some of these effects. Head down tilt bed rest (HDBR) induces body unloading and fluid shifts, and is often used to investigate spaceflight effects. Here, we examined whether exercise mitigates effects of 70 days HDBR on the brain and if fitness and brain changes with HDBR are related. Methods HDBR subjects were randomized to no-exercise (n = 5) or traditional aerobic and resistance exercise (n = 5). Additionally, a flywheel exercise group was included (n = 8). Exercise protocols for exercise groups were similar in intensity, therefore these groups were pooled in statistical analyses. Pre and post-HDBR MRI (structure and structural/functional connectivity) and physical fitness measures (lower body strength, muscle cross sectional area, VO2 max, body composition) were collected. Voxel-wise permutation analyses were used to test group differences in brain changes, and their associations with fitness changes. Results Comparisons of exercisers to controls revealed that exercise led to smaller fitness deterioration with HDBR but did not affect brain volume or connectivity. Group comparisons showed that exercise modulated post-HDBR recovery of brain connectivity in somatosensory regions. Posthoc analysis showed that this was related to functional connectivity decrease with HDBR in non-exercisers but not in exercisers. Correlational analyses between fitness and brain changes showed that fitness decreases were associated with functional connectivity and volumetric increases (all r >.74), potentially reflecting compensation. Modest brain changes or even decreases in connectivity and volume were observed in subjects who maintained or showed small fitness gains. These results did not survive Bonferroni correction, but can be considered meaningful because of the large effect sizes. Conclusion Exercise performed during HDBR mitigates declines in fitness and strength. Associations between fitness and brain connectivity and volume changes, although unadjusted for multiple comparisons in this small sample, suggest that supine exercise reduces compensatory HDBR-induced brain changes.
Medicine and Science in Sports and Exercise | 2014
Alan D. Moore; Meghan E. Downs; Stuart M. C. Lee; Alan H. Feiveson; Poul Knudsen; Simon E. Evetts; Lori L. Ploutz-Snyder
Aerobic capacity (VO2peak) previously has not been measured during or after long-duration spaceflight. PURPOSE: To measure VO2peak and submaximal exercise responses during and after International Space Station (ISS) missions. METHODS: Astronauts (9 M, 5 F: 49 +/- 5 yr, 175 +/- 7 cm, 77.2 +/- 15.1 kg, 40.6 +/- 6.4 mL/kg/min [mean +/-SD]) performed graded peak cycle tests ~90 days before spaceflight, 15 d (FD15) after launch and every ~30 d thereafter during flight, and 1 (R+1), 10 (R+10), and 30 d (R+30) after landing. Oxygen consumption (VO2) and heart rate (HR) were measured from rest to peak exercise, while cardiac output (Q), stroke volume (SV), and arterial-venous oxygen difference (a-vO2diff) were measured only during rest and submaximal exercise. Data were analyzed using mixed-model linear regression. Body mass contributed significantly to statistical models, and thus results are reported as modeled estimates for an average subject. RESULTS: Early inflight (FD15) VO2peak was 17% lower (95% CI = - 22%, -13%) than preflight. VO2peak increased during spaceflight (0.001 L/min/d, P = 0.02) but did not return to preflight levels. On R+1 VO2peak was 15% (95% CI = -19%, -10%) lower than preflight but recovered to within 2% of preflight by R+30 (95% CI = -6%, +3%). Peak HR was not significantly different from preflight at any time. Inflight submaximal VO2 and a-vO2diff were generally lower than preflight, but the Q vs. VO2 slope was unchanged. In contrast, the SV vs. VO2 slope was lower (P < 0.001), primarily due to elevated SV at rest, and the HR vs. VO2 slope was greater (P < 0.001), largely due to elevated HR during more intense exercise. On R+1 although the relationships between VO2 and Q, SV, and HR were not statistically different than preflight, resting and submaximal exercise SV was lower (P < 0.001), resting and submaximal exercise HR was higher (P < 0.002), and a-vO2diff was unchanged. HR and SV returned to preflight levels by R+30. CONCLUSION: In the average astronaut VO2peak was reduced during spaceflight and immediately after landing but factors contributing to lower VO2peak may be different during spaceflight and recovery. Maintaining Q while VO2 is reduced inflight may be suggestive of an elevated blood flow to vascular beds other than exercising muscles, but decreased SV after flight likely reduces Q at peak exertion.