Megumi Ehara
Osaka University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Megumi Ehara.
Current Genetics | 2000
Megumi Ehara; Yuji Inagaki; Kazuo Watanabe; Takeshi Ohama
Abstract In order to address the relationships among diatom groups and to investigate possible changes in their mitochondrial (mt) genetic codes, we have analyzed a 1.1-kb region of the cytochrome c oxidase subunit I (coxI) gene from eight diverse diatom species. A phylogenetic analysis of these coxI sequences including representative species of the Phaeophyta, Xanthophyta, Eustigmatophyta and Haptophyta showed that the diatoms (Bacillariophyta) formed a well-supported monophyletic group. Of the eight species investigated, four have been classified together as radial centric diatoms based on morphology. However, in our coxI tree, the two radial centrics belonging to the order Thlassiosirales (Skeletonema costatum and Thalassiosira nordenskioldii) were placed as the sister group to the multipolar centric diatoms, while the other two radial centrics (Melosira ambigua and Rhizosolenia setigera) were in another clade. Also, in two species of the Tharassiosirales we found UGA codons that occur at conserved tryptophan (Trp) sites in the coxI sequences, strongly indicating that UGA codes for Trp in these diatoms. No evidence of a deviant genetic code was detected in the other analyzed diatom species. There was no apparent relationship between the nucleotide third-position GC content of mtDNA (based on the sequenced coxI region) and the presence of a deviant genetic code.
Journal of Molecular Evolution | 1998
Yuji Inagaki; Megumi Ehara; Kazuo Watanabe; Yasuko Hayashi-Ishimaru; Takeshi Ohama
Abstract. For the comprehensive analyses of deviant codes in protistan mitochondria (mt), we sequenced about a 1.1-kb region of a mitochondrial (mt) gene, the cytochrome c oxidase subunit I (coxI) in two chlorarachniophytes, the filose amoeba Euglypha rotunda, the cryptomonad Cryptomonas ovata, the prymnesiophyte (haptophyte) Diacronema vlkianum (Pavlovales), and the diatom Melosira ambigua. As a result of this analysis, we noticed that the UGA codon is assigned to tryptophan (Trp) instead of being a signal for translational termination in two chlorarachniophytes and in E. rotunda. The same type of deviant code was reported previously in animals, fungi, ciliates, kinetoplastids, Chondrus crispus (a red alga), Acanthamoeba castellanii (an amoeboid protozoon), and three of the four prymnesiophyte orders with the exception of the Pavlovales. A phylogenetic analysis based on the COXI sequences of 56 eukaryotes indicated that the organisms bearing the modified code, UGA for Trp, are not monophyletic. Based on these studies, we propose that the ancestral mitochondrion was bearing the universal genetic code and subsequently reassigned the codon to Trp independently, at least in the lineage of ciliates, kinetoplastids, rhodophytes, prymnesiophytes, and fungi. We also discuss how this codon was directionally captured by Trp tRNA.
Journal of Molecular Evolution | 1997
Yuji Inagaki; Yasuko Hayashi-Ishimaru; Megumi Ehara; Ikuo Igarashi; Takeshi Ohama
Abstract. The chloroplasts of euglenophytes and dinoflagellates have been suggested to be the vestiges of endosymbiotic algae acquired during the process of evolution. However, the evolutionary positions of these organisms are still inconclusive, and they have been tentatively classified as both algae and protozoa. A representative gene of the mitochondrial genome, cytochrome oxidase subunit I (coxI), was chosen and sequenced to clarify the phylogenetic positions of four dinoflagellates, two euglenophytes and one apicomplexan protist. This is the first report of mitochondrial DNA sequences for dinoflagellates and euglenophytes. Our COXI tree shows clearly that dinoflagellates are closely linked to apicomplexan parasites but not with algae. Euglenophytes and algae appear to be only remotely related, with euglenophytes sharing a possible evolutionary link with kinetoplastids. The COXI tree is in general agreement with the tree based on the nuclear encoded small subunit of ribosomal RNA (SSU rRNA) genes, but conflicts with that based on plastid genes. These results support the interpretation that chloroplasts present in euglenophytes and dinoflagellates were captured from algae through endosymbioses, while their mitochondria were inherited from the host cell. We suggest that dinoflagellates and euglenophytes were originally heterotrophic protists and that their chloroplasts are remnants of endosymbiotic algae.
Journal of Molecular Evolution | 1997
Megumi Ehara; Yasuko Hayashi-Ishimaru; Yuji Inagaki; Takeshi Ohama
Several algae that were previously classified in the phylum Xanthophyta (yellow-green algae) were assigned in 1971 to a new phylum, Eustigmatophyta. It was anticipated that the number of algae reclassified to Eustigmatophyta would increase. However, due to the fact that the morphological characteristics that segregate eustigmatophytes from other closely related algae can be only obtained through laborious electron microscopic techniques, the number of members in this phylum have increased rather slowly. We attempted, therefore, to segregate two closely related groups of algae, eustigmatophytes and yellow-green algae, on the basis of a molecular phylogenetic tree as a means of providing an alternative method of distinguishing these phyla. We analyzed the mitochondrial cyto-chrome oxidase subunit I (COXI) gene sequences of eight algae classified as xanthophyceans and found that six manifested the expected deviant genetic code where AUA codes for methionine (AUA/Met), but not for isoleucine (AUA/Ile) as in the universal genetic code. The other two, Monodus sp. (CCMP 505) and Ophiocytium majus (CCAP 855/1), which were presumed to be yellow-green algae, and all the examined eustigmatophytes utilized AUA for Ile. In addition, the phylogenetic tree of COXI gene sequences showed that the six yellow-green algae bearing the AUA/Met deviant code composed a tight clade with a bootstrap value of 100%. The phylogenetic tree of the corresponding sequences from Monodus sp. and Ophiocytium majus and the eustigmatophytes also composed a tight cluster, but with a bootstrap value of 92%. These results strongly suggest that two previously classified members of yellow-green algae belong to the phylum Eustigmatophyta. Therefore, examination of the mitochondrial genetic code in algae appears to be a potentially very useful genetic marker for classifying these organisms, especially when it is considered with the results obtained through a molecular phylogenetic tree.
Gene | 2000
Megumi Ehara; Kazuo Watanabe; Takeshi Ohama
We identified group IIA introns that contain an open reading frame (ORF) in the mitochondrial cytochrome oxidase subunit I (cox1) genes of yellow algae, a diatom Thalassiosira (Th.) nordenskioeldii CCMP 992 collected from the east coast of USA, and a haptophyte Pavlova (Pa.) lutheri CCMP 1325 collected from Finland. Cognate introns of CCMP 1325 were detected in all Pa. lutheri strains investigated, which were collected from various oceans. In contrast, the intron was absent from closely related species belonging to the same genus Pavlova. This was also the case for the group II intron detected in a diatom Th. nordenskioeldii CCMP 992. The group II intron of CCMP 992 was located at the corresponding site to the group IIA intron found in Pylaiella (synonym, Pilayella) littoralis. The deduced secondary structures of these introns, one of which is from a diatom and the other from a brown alga, were virtually identical. In contrast, the haptophyte group II intron was inserted at a novel locus, and shares no particularly high sequence homology with any intron known to date. The phylogenetic tree based on the intronic ORF domain was not congruent with that based on the cox1 exon. The most prominent property of the intronic ORF tree was that introns located at homologous sites made robust pair clades irrespective of the phylogenetic relationships of the organisms. This suggests that mitochondrial group II introns often invade intronless alleles across the species barrier with site specificity. Homology analysis of the haptophyte intronic ORF suggested that it comprises three domains: reverse transcriptase (RT), RNA maturase (Ma), and H-N-H endonuclease. However, the intronic ORF of the diatom contains the Ma domain but is apparently missing the H-N-H domain, and its RT domain is most probably partly or completely lacking in function.
Phycological Research | 1999
Megumi Ehara; Taiju Kitayama; Kazuo Watanabe; Yuji Inagaki; Yasuko Hayashi-Ishimaru; Takeshi Ohama
We have determined a partial DNA sequence (approximately 1.1 kb) encoding the mitochondrial cytochrome oxidase subunit I (cox1) gene from the alga NIES 548, a strain which has been maintained as Tribonema marinum J. Feldmann (Xanthophyceae) at the National Institute of Environmental Study (NIES, Japan). Unexpectedly, phylogenetic analysis of cox1 sequences showed that NIES 548 does not group with Xanthophyceae, but groups strongly with the Phaeophyceae. Furthermore, the cox1 sequence from NIES 548 does not use the codon AUA for methionine (AUA/Met), a genetic marker characteristic for the Xanthophyceae. Given the cox1 results, the molecular phylogenetic position of NIES 548 was thus examined with DNA sequences from genes encoded in the two other subcellular compartments. In the plastid, we analyzed elongation factor tu (tufA) and in the nucleus, the small subunit ribosomal RNA (rrnS). These analyses clearly indicated that NIES 548 is not a member of the Xanthophyceae, but a member of the Phaeophyceae. This result is robust as it was supported by all three genes analyzed, each of which reside in different genomes. The phylogenetic resolutions of these trees were almost the same, proving the usefulness of mitochondrial cox1 gene as a tool for phylogenetic reconstruction in the phycological arena. Our light microscopic observations indicated that NIES 548 is a uniseriate filamentous alga with branches, a clear contradiction of its original descriptions. We conclude that NIES 548 is a phaeophycean alga and is not the same clone of the strain observed by Sartoni and his co‐authors.
Journal of Phycology | 1998
Megumi Ehara; Kazuo Watanabe; Hiroshi Kawai; Yuji Inagaki; Yasuko Hayashi-Ishimaru; Takeshi Ohama
The DNA sequence of the cytochrome oxidase subunit I (COXI) gene (1059 bp), was determined in a number of heterokont algae, including five species of the Phaeophyceae [Chorda filum (Linnaeus) Stackhouse, Colpomenia bullosa (Saunders) Yamada, Ectocarpus sp., Pseudochorda nagaii (Tokida) Inagaki, Undaria pinnatifida (Harvey) Suringar], and a member of the Raphidophyceae [Chattonella antiqua (Hada) Ono]. The distribution of a deviant mitochondrial code, the AUA codon for methionine (AUA/Met), which was previously reported in the Xanthophyceae, was inferred from these COXI sequences. Comparative analyses of these sequences revealed that all the algae described above bear the universal genetic code, including the assignment for the AUA codon. A phylogenetic tree was constructed using the obtained sequences along with already‐published COXI sequences of various heterokont algae. The clusters of the Xanthophyceae and the Phaeophyceae were resolved as sister groups with high bootstrap support, excluding a bacillariophycean species, a raphidophycean species, and three species of the Eustigmatophyceae. Taking the distribution of the deviant code and the COXI phylogenetic tree together, the genetic code change most probably occurred in an ancestor of the Xanthophyceae after it had branched off from the Phaeophyceae.
Current Genetics | 1997
Yasuko Hayashi-Ishimaru; Megumi Ehara; Yuji Inagaki; Takeshi Ohama
Gene | 1998
Kazuo Watanabe; Megumi Ehara; Yuji Inagaki; Takeshi Ohama
Plant and Cell Physiology | 2000
Megumi Ehara; Kazuo Watanabe; Nagako Hiraiwa; Takeshi Ohama
Collaboration
Dive into the Megumi Ehara's collaboration.
Obihiro University of Agriculture and Veterinary Medicine
View shared research outputs